
Phased Array System Toolbox™

Reference

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Phased Array System Toolbox™ Reference

© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only Revised for version 1.0 (Release 2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Function Reference

1
Array Analysis . 1-2

Array Antenna Elements . 1-3

Coordinate Systems and Motion Modeling 1-4

Detection . 1-5

Environment Models . 1-6

Radar Analysis . 1-7

Receiver Models . 1-8

Space-Time Adaptive Processing . 1-9

Transmitter Models . 1-10

Utilities . 1-11

Waveforms . 1-12

System Object Reference

2
Array Analysis . 2-2

iii

Array Antenna Elements . 2-3

Array Microphone Elements . 2-4

Array Design . 2-5

Beamformers . 2-6

Collector . 2-7

Coordinate Systems and Motion Modeling 2-8

Detection . 2-9

Direction of Arrival (DOA) . 2-10

Environment Models . 2-11

Jammer Models . 2-12

Radiator . 2-13

Receiver Models . 2-14

Space-Time Adaptive Processing . 2-15

Target Models . 2-16

Transmitter Models . 2-17

Waveforms . 2-18

Define New System Objects . 2-19

iv Contents

Alphabetical List

3

Functions-Alphabetical List

4

v

vi Contents

1

Function Reference

Array Analysis (p. 1-2) Analyze array response

Array Antenna Elements (p. 1-3) Model antenna elements

Coordinate Systems and Motion
Modeling (p. 1-4)

Motion managers

Detection (p. 1-5) Signal detection and matched
filtering

Environment Models (p. 1-6) Modeling signal propagation

Radar Analysis (p. 1-7) Radar equation modeling

Receiver Models (p. 1-8) Model a phased array receiver

Space-Time Adaptive Processing
(p. 1-9)

Angle-Doppler processing

Transmitter Models (p. 1-10) Model a pulse transmitter

Utilities (p. 1-11) General utility functions

Waveforms (p. 1-12) Waveform analysis

1 Function Reference

Array Analysis
az2broadside Convert azimuth angle to broadside

angle

broadside2az Convert broadside angle to azimuth
angle

1-2

Array Antenna Elements

Array Antenna Elements
aperture2gain Convert effective aperture to gain

azel2phithetapat Convert radiation pattern from
azimuth/elevation to phi/theta form

azel2uvpat Convert radiation pattern from
azimuth/elevation form to u/v form

gain2aperture Convert gain to effective aperture

phitheta2azelpat Convert radiation pattern from
phi/theta form to azimuth/elevation
form

phitheta2uvpat Convert radiation pattern from
phi/theta form to u/v form

uv2azelpat Convert radiation pattern from u/v
form to azimuth/elevation form

uv2phithetapat Convert radiation pattern from u/v
form to phi/theta form

1-3

1 Function Reference

Coordinate Systems and Motion Modeling
azel2phitheta Convert angles from

azimuth/elevation form to phi/theta
form

azel2uv Convert azimuth/elevation angles to
u/v coordinates

dop2speed Convert Doppler shift to speed

global2localcoord Convert global to local coordinates

local2globalcoord Convert local to global coordinates

phitheta2azel Convert angles from phi/theta form
to azimuth/elevation form

phitheta2uv Convert phi/theta angles to u/v
coordinates

radialspeed Relative radial speed

rangeangle Range and angle calculation

speed2dop Convert speed to Doppler shift

uv2azel Convert u/v coordinates to
azimuth/elevation angles

uv2phitheta Convert u/v coordinates to phi/theta
angles

1-4

Detection

Detection
albersheim Required SNR using Albersheim’s

equation

npwgnthresh Detection SNR threshold for signal
in white Gaussian noise

pulsint Pulse integration

rocpfa Receiver operating characteristic
curves by false-alarm probability

rocsnr Receiver operating characteristic
curves by SNR

shnidman Required SNR using Shnidman’s
equation

stretchfreq2rng Convert frequency offset to range

1-5

1 Function Reference

Environment Models
billingsleyicm Billingsley’s intrinsic clutter motion

(ICM) model

depressionang Depression angle of surface target

effearthradius Effective earth radius

fspl Free space path loss

grazingang Grazing angle of surface target

horizonrange Horizon range

surfacegamma Gamma value for different terrains

surfclutterrcs Surface clutter radar cross section
(RCS)

1-6

Radar Analysis

Radar Analysis
radareqpow Peak power estimate from radar

equation

radareqrng Maximum theoretical range estimate

radareqsnr SNR estimate from radar equation

1-7

1 Function Reference

Receiver Models
noisepow Receiver noise power

systemp Receiver system-noise temperature

1-8

Space-Time Adaptive Processing

Space-Time Adaptive Processing
dopsteeringvec Doppler steering vector

1-9

1 Function Reference

Transmitter Models

1-10

Utilities

Utilities
delayseq Delay or advance sequence

physconst Physical constants

unigrid Uniform grid

val2ind Uniform grid index

1-11

1 Function Reference

Waveforms
ambgfun Ambiguity function

1-12

2

System Object Reference

Array Analysis (p. 2-2) Analyze array response

Array Antenna Elements (p. 2-3) Model antenna elements

Array Microphone Elements (p. 2-4) Model microphone elements

Array Design (p. 2-5) Design array geometries

Beamformers (p. 2-6) Beamforming

Collector (p. 2-7) Model incident waveforms at arrays

Coordinate Systems and Motion
Modeling (p. 2-8)

Motion managers

Detection (p. 2-9) Signal detection and matched
filtering

Direction of Arrival (DOA) (p. 2-10) DOA estimation

Environment Models (p. 2-11) Model propagation environments

Jammer Models (p. 2-12) Model signal jammers

Radiator (p. 2-13) Model signal radiation

Receiver Models (p. 2-14) Model a phased array receiver

Space-Time Adaptive Processing
(p. 2-15)

Implement space-time adaptive
processing

Target Models (p. 2-16) Model targets

Transmitter Models (p. 2-17) Model a pulse transmitter

Waveforms (p. 2-18) Construct pulse waveforms

Define New System Objects (p. 2-19) Create new kinds of System objects

2 System Object Reference

Array Analysis

phased.ArrayGain Sensor array gain

phased.ArrayResponse Sensor array response

phased.ElementDelay Sensor array element delay
estimator

phased.SteeringVector Sensor array steering vector

2-2

Array Antenna Elements

Array Antenna Elements

phased.CosineAntennaElement Cosine antenna

phased.CustomAntennaElement Custom antenna

phased.IsotropicAntennaElement Isotropic antenna

2-3

2 System Object Reference

Array Microphone Elements

phased.CustomMicrophoneElement Custom microphone

phased.OmnidirectionalMicrophoneElementOmnidirectional microphone

2-4

Array Design

Array Design

phased.ConformalArray Conformal array

phased.PartitionedArray Phased array partitioned into
subarrays

phased.ReplicatedSubarray Phased array formed by replicated
subarrays

phased.ULA Uniform linear array

phased.URA Uniform rectangular array

2-5

2 System Object Reference

Beamformers

phased.FrostBeamformer Frost beamformer

phased.LCMVBeamformer Narrowband LCMV beamformer

phased.MVDRBeamformer Narrowband MVDR (Capon)
beamformer

phased.PhaseShiftBeamformer Narrowband phase shift beamformer

phased.SubbandPhaseShiftBeamformerSubband phase shift beamformer

phased.TimeDelayBeamformer Time delay beamformer

phased.TimeDelayLCMVBeamformer Time delay LCMV beamformer

2-6

Collector

Collector

phased.Collector Narrowband signal collector

phased.WidebandCollector Wideband signal collector

2-7

2 System Object Reference

Coordinate Systems and Motion Modeling

phased.Platform Motion platform

2-8

Detection

Detection

phased.CFARDetector Constant false alarm rate (CFAR)
detector

phased.MatchedFilter Matched filter

phased.StretchProcessor Stretch processor for linear FM
waveform

phased.TimeVaryingGain Time varying gain control

2-9

2 System Object Reference

Direction of Arrival (DOA)
phased.BeamscanEstimator Beamscan spatial spectrum

estimator for ULA

phased.BeamscanEstimator2D 2-D beamscan spatial spectrum
estimator

phased.BeamspaceESPRITEstimator Beamspace ESPRIT direction of
arrival (DOA) estimator

phased.ESPRITEstimator ESPRIT direction of arrival (DOA)
estimator

phased.MVDREstimator MVDR (Capon) spatial spectrum
estimator for ULA

phased.MVDREstimator2D 2-D MVDR (Capon) spatial spectrum
estimator

phased.RootMUSICEstimator Root MUSIC direction of arrival
(DOA) estimator

phased.RootWSFEstimator Root WSF direction of arrival (DOA)
estimator

phased.SumDifferenceMonopulseTrackerSum and difference monopulse for
ULA

phased.SumDifferenceMonopulseTracker2DSum and difference monopulse for
URA

2-10

Environment Models

Environment Models

phased.ConstantGammaClutter Constant gamma clutter simulation

phased.FreeSpace Free space environment

phased.gpu.ConstantGammaClutter Constant gamma clutter simulation
on GPU

2-11

2 System Object Reference

Jammer Models
phased.BarrageJammer Barrage jammer

2-12

Radiator

Radiator
phased.Radiator Narrowband signal radiator

2-13

2 System Object Reference

Receiver Models
phased.ReceiverPreamp Receiver preamp

2-14

Space-Time Adaptive Processing

Space-Time Adaptive Processing

phased.ADPCACanceller Adaptive DPCA (ADPCA) pulse
canceller

phased.AngleDopplerResponse Angle-Doppler response

phased.DPCACanceller Displaced phase center array
(DPCA) pulse canceller

phased.STAPSMIBeamformer Sample matrix inversion (SMI)
beamformer

2-15

2 System Object Reference

Target Models
phased.RadarTarget Radar target

2-16

Transmitter Models

Transmitter Models
phased.Transmitter Transmitter

2-17

2 System Object Reference

Waveforms

phased.FMCWWaveform FMCW Waveform

phased.LinearFMWaveform Linear FM pulse waveform

phased.PhaseCodedWaveform Phase-coded pulse waveform

phased.RectangularWaveform Rectangular pulse waveform

phased.SteppedFMWaveform Stepped FM pulse waveform

2-18

Define New System Objects

Define New System Objects

getDiscreteStateImpl Discrete state property values

getNumInputsImpl Number of input arguments passed
to step and setup methods

getNumOutputsImpl Number of outputs returned by
method

isDoneImpl End-of-data flag

isInactivePropertyImpl Active or inactive flag for properties

loadObjectImpl Load saved System object from MAT
file

matlab.System Base class for System objects

matlab.system.mixin.FiniteSource Finite source mixin class

matlab.system.StringSet Set of valid string values

processTunedPropertiesImpl Action when tunable properties
change

releaseImpl Release resources

resetImpl Reset System object™ states

saveObjectImpl Save System object in MAT file

setProperties Set property values from name-value
pair inputs

setupImpl Initialize System object

stepImpl System output and state update
equations

validateInputsImpl Validate inputs to step method

validatePropertiesImpl Validate property values

2-19

2 System Object Reference

2-20

3

Alphabetical List

matlab.System

Purpose Base class for System objects

Description matlab.System is the base class for System objects. In your class
definition file, you must subclass your object from this base class (or
from another class that derives from this base class). Subclassing
allows you to use the implementation and service methods provided by
this base class to build your object. You use this syntax as the first line
of your class definition file to directly inherit from the matlab.System
base class, where ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note You must set Access=protected for each matlab.System
method you use in your code.

Methods getDiscreteStateImpl Discrete state property values

getNumInputsImpl Number of input arguments
passed to step and setup methods

getNumOutputsImpl Number of outputs returned by
method

isInactivePropertyImpl Active or inactive flag for
properties

loadObjectImpl Load saved System object from
MAT file

processTunedPropertiesImpl Action when tunable properties
change

releaseImpl Release resources

resetImpl Reset System object states

saveObjectImpl Save System object in MAT file

3-2

matlab.System

setProperties Set property values from
name-value pair inputs

setupImpl Initialize System object

stepImpl System output and state update
equations

validateInputsImpl Validate inputs to step method

validatePropertiesImpl Validate property values

Attributes In addition to the attributes available for MATLAB® objects, you can
apply the following attributes to any property of a custom System object.

Nontunable After an object is locked (after step or setup
has been called), use Nontunable to prevent
a user from changing that property value.
By default, all properties are tunable. The
Nontunable attribute is useful to lock a
property that has side effects when changed.
This attribute is also useful for locking a
property value assumed to be constant during
processing. You should always specifiy
properties that affect the number of input or
output ports as Nontunable.

Logical Use Logical to limit the property value to a
logical, scalar value. Any scalar value that can
be converted to a logical is also valid, such as 0
or 1.

PositiveInteger Use PositiveInteger to limit the property
value to a positive integer value.

DiscreteState Use DiscreteState to mark a property so it
will display its state value when you use the
getDiscreteState method.

3-3

matlab.System

To learn more about attributes, see “Property Attributes” in the
MATLAB Object-Oriented Programming documentation.

Examples Create a simple System object, AddOne, which subclasses from
matlab.System. You place this code into a MATLAB file, AddOne.m.

classdef AddOne < matlab.System
%ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method.
function y = stepImpl(~,x)

y = x + 1;
end

end
end

To use this object, create an instance of AddOne, provide an input, and
use the step method:

hAdder = AddOne;
x = 1;
y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which
you define in your class definition file.

properties (Nontunable)
InitialValue

end

| | matlab.system.StringSet | | | |
matlab.system.mixin.FiniteSource

How To • “Object-Oriented Programming”

3-4

matlab.System

• Class Attributes

• Property Attributes

• “Method Attributes”

•

•

•

• “Define Basic System Objects”

•

•

•

• “Define Property Attributes”

3-5

matlab.System.getDiscreteStateImpl

Purpose Discrete state property values

Syntax s = getDiscreteStateImpl(obj)

Description s = getDiscreteStateImpl(obj) returns a struct s of state values.
The field names of the struct are the object’s DiscreteState property
names. To restrict or change the values returned by getDiscreteState
method, you can override this getDiscreteStateImpl method. End
users cannot specify scaled double fi objects as inputs to discrete state
properties.

getDiscreteStatesImpl is called by the getDiscreteState method,
which is called by the setup method.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Output
Arguments

s

Struct of state values.

Examples methods (Access=protected)
function s = getDiscreteState(obj)
end

end

| | setupImpl

•

•

• “Define Property Attributes”

3-6

matlab.System.getNumInputsImpl

Purpose Number of input arguments passed to step and setup methods

Syntax num = getNumInputsImpl(obj)

Description num = getNumInputsImpl(obj) returns the number of inputs num
(excluding the System object handle) expected by the step method. The
default implementation returns 1, which requires one input from the
user, in addition to the System object handle. To specify a value other
than 1, you must use include the getNumInputsImpl method in your
class definition file.

getNumInputsImpl is called by the getNumInputs method and by the
setup method if the number of inputs has not been determined already.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Output
Arguments

num

Number of inputs expected by the step method for the specified
object.

Default: 1

Examples Specify the number of inputs (2, in this case) expected by the step
method.

methods (Access=protected)
function num = getNumInputsImpl(obj)

num = 2;
end

end

3-7

matlab.System.getNumInputsImpl

Specify that the step method will not accept any inputs.

methods (Access=protected)
function num = getNumInputsImpl(~)

num = 0;
end

end

| | setupImpl | | | | stepImpl | | | | getNumOutputsImpl

•

•

• “Change Number of Step Inputs or Outputs”

3-8

matlab.System.getNumOutputsImpl

Purpose Number of outputs returned by step method

Syntax num = getNumOutputsImpl (obj)

Description num = getNumOutputsImpl (obj) returns the number of outputs
from the step method. The default implementation returns 1
output. To specify a value other than 1, you must use include the
getNumOutputsImpl method in your class definition file.

getNumOutputsImpl is called by the getNumOutputs method, if the
number of outputs has not been determined already.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Output
Arguments

num

Number of outputs to be returned by the step method for the
specified object.

Examples Specify the number of outputs (2, in this case) returned from the step
method.

methods (Access=protected)
function num = getNumOutputsImpl(obj)

num = 2;
end

end

Specify that the step method does not return any outputs.

methods (Access=protected)

3-9

matlab.System.getNumOutputsImpl

function num = getNumOutputsImpl(~)
num = 0;

end
end

| | stepImpl | | | | getNumInputsImpl | | | | setupImpl

•

•

• “Change Number of Step Inputs or Outputs”

3-10

matlab.System.isInactivePropertyImpl

Purpose Active or inactive flag for properties

Syntax flag = isInactivePropertyImpl(obj,prop)

Description flag = isInactivePropertyImpl(obj,prop) specifies whether a
property is inactive for the current object configuration. An inactive
property is a property that is not relevant to the object, given the values
of other properties. Inactive properties are not shown if you use the
disp method to display object properties. If you attempt to use public
access to directly access or use get or set on an inactive property, a
warning occurs.

isInactiveProperty is called by the disp method and by the get and
set methods.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

prop

Property name

Output
Arguments

flag

Logical scalar value indicating whether the input property prop is
inactive for the current object configuration.

Examples Display the InitialValue property only when the
UseRandomInitialValue property value is false.

methods (Access=protected)
function flag = isInactivePropertyImpl(obj,propertyName)

if strcmp(propertyName,'InitialValue')
flag = obj.UseRandomInitialValue;

3-11

matlab.System.isInactivePropertyImpl

else
flag = false;

end
end

end

| | setProperties

•

•

• “Hide Inactive Properties”

3-12

matlab.System.loadObjectImpl

Purpose Load saved System object from MAT file

Syntax loadObjectImpl(obj)

Description loadObjectImpl(obj) loads a saved System object, obj, from a
MAT file. Your loadObjectImpl method should correspond to your
saveObjectImpl method to ensure that all saved properties and data
are loaded.

Input
Arguments

obj

System object handle

Examples Load a saved System object. In this case, the object contains a child
object, protected and private properties, and a discrete state.

methods(Access=protected)
function loadObjectImpl(obj, s, wasLocked)

% Load child System objects
obj.child = matlab.System.loadObject(s.child);

% Save protected & private properties
obj.protected = s.protected;
obj.pdependentprop = s.pdependentprop;

% Save state only if locked when saved
if wasLocked

obj.state = s.state;
end

% Call base class method
loadObjectImpl@matlab.System(obj,s,wasLocked);

end
end

How To • “Load System Object”

3-13

matlab.System.loadObjectImpl

• “Save System Object”

3-14

matlab.System.processTunedPropertiesImpl

Purpose Action when tunable properties change

Syntax processTunedPropertiesImpl(obj)

Description processTunedPropertiesImpl(obj) specifies the actions to perform
when one or more tunable property values change. This method is
called as part of the next call to the step method after a tunable
property value changes. A property is tunable only if its Nontunable
attribute is false, which is the default.

processTunedPropertiesImpl is called by the step method.

Note You must set Access=protected for this method.

Tips Use this method when a tunable property affects a different property
value. For example, two property values determine when to calculate
a lookup table. You want to perform that calculation when either
property changes. You also want the calculation to be done only once if
both properties change before the next call to the step method.

Input
Arguments

obj

System object handle

Examples Use processTunedPropertiesImpl to recalculate the lookup table if
the value of either the NumNotes or MiddleC property changes.

methods (Access=protected)
function processTunedPropertiesImpl(obj)

% Generate a lookup table of note frequencies
obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12))

end
end

| | validatePropertiesImpl | | | | setProperties

3-15

matlab.System.processTunedPropertiesImpl

•

•

• “Validate Property and Input Values”

•

•

•

• “Define Property Attributes”

3-16

matlab.System.releaseImpl

Purpose Release resources

Syntax releaseImpl(obj)

Description releaseImpl(obj) releases any resources used by the System object,
such as file handles. This method also performs any necessary
cleanup tasks. To release resources for a System object, you must use
releaseImpl instead of a destructor.

releaseImpl is called by the release method. releaseImpl is also
called when the object is deleted or cleared from memory, or when all
references to the object have gone out of scope.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Examples Use the releaseImpl method to close a file.

methods (Access=protected)
function releaseImpl(obj)

fclose(obj.pFileID);
end

end

| | resetImpl

•

•

• “Release System Object Resources”

3-17

matlab.System.resetImpl

Purpose Reset System object states

Syntax resetImpl(obj)

Description resetImpl(obj) defines the state reset equations for the System object.
Typically you reset the states to a set of initial values.

resetImpl is called by the reset method. It is also called by the setup
method, after the setupImpl method.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Examples Use the reset method to reset the counter pCount property to zero.

methods (Access=protected)
function resetImpl(obj)

obj.pCount = 0;
end

end

| | releaseImpl

•

•

• “Reset Algorithm State”

3-18

matlab.System.saveObjectImpl

Purpose Save System object in MAT file

Syntax saveObjectImpl(obj)

Description saveObjectImpl(obj) defines what System object obj property and
state values are saved in a MAT file when a user calls save on that
object. save calls saveObject, which then calls saveObjectImpl. If
you do not define a saveObjectImpl method for your System object
class, only public properties are saved. To save any private or protected
properties or state information, you must define a saveObjectImpl in
your class definition file.

You should save the state of an object only if the object is locked. When
the user loads that saved object, it loads in that locked state.

To save child object information, you use the associated saveObject
method within the saveObjectImpl method.

End users can use load, which calls loadObjectImpl to load a System
object into their workspace.

Input
Arguments

obj

System object handle

Examples Define what is saved for the System object. Call the base class version
of saveObjectImpl to save public properties. Then, save any child
System objects and any protected and private propertes. Finally, save
the state, if the object is locked.

methods(Access=protected)
function s = saveObjectImpl(obj)

s = saveObjectImpl@matlab.System(obj);
s.child = matlab.System.saveObject(obj.child);
s.protected = obj.protected;
s.pdependentprop = obj.pdependentprop;
if isLocked(obj)

s.state = obj.state;

3-19

matlab.System.saveObjectImpl

end
end

end

How To • “Save System Object”

• “Load System Object”

3-20

matlab.System.setProperties

Purpose Set property values from name-value pair inputs

Syntax setProperties(obj,numargs,name1,value1,name2,value2,...)
setProperties(obj,numargs,arg1,...,argm,name1,value1,name2,

value2,...)

Description setProperties(obj,numargs,name1,value1,name2,value2,...)
provides the name-value pair inputs to the System object constructor.
Use this syntax if every input must specify both name and value.

Note To allow standard name-value pair handling at construction,
define setProperties for your System object.

setProperties(obj,numargs,arg1,...,argm,name1,value1,name2,value2,...)
provides the value-only inputs, followed by the name-value pair inputs
to the System object during object construction. Use this syntax if you
want to allow users to specify one or more inputs by their values only.

Input
Arguments

obj

System object handle

numargs

Number of inputs passed in by the object constructor

name*

Name of property

value*

Value of the property

arg*

Value of property (for value-only input to the object constructor)

3-21

matlab.System.setProperties

Examples Set up the object so users can specify property values via name-value
pairs when constructing the object.

methods
function obj = MyFile(varargin)

setProperties(obj,nargin,varargin{:});
end

end

•

•

• “Set Property Values at Construction Time”

3-22

matlab.System.setupImpl

Purpose Initialize System object

Syntax setupImpl(obj,input1, input2,...)

Description setupImpl(obj,input1, input2,...) sets up a System object. To
acquire resources for a System object, you must use setupImpl instead
of a constructor. setupImpl executes the first time the step method is
called on an object after that object has been created. It also executes
the next time step is called after an object has been released. . The
number of inputs must match the number of inputs defined in the
getNumInputsImpl method. You pass the inputs into setupImpl to use
the input sizes, datatypes, etc. in the one-time calculations.

setupImpl is called by the setup method, which is done automatically
as the first subtask of the step method on an unlocked System object.

Note You must set Access=protected for this method.

Tips To validate properties or inputs use the validatePropertiesImpl,
validateInputsImpl, or setProperties methods. Do not include
validation in setupImpl.

Input
Arguments

obj

System object handle

input*

Inputs to the setup method

Examples Open a file for writing using the setupImpl method.

methods (Access=protected)
function setupImpl(obj,data)

obj.pFileID = fopen(obj.Filename, 'wb');
if obj.pFileID < 0

3-23

matlab.System.setupImpl

error('Opening the file failed');
end

end
end

| | validatePropertiesImpl | | | | validateInputsImpl | | | |
setProperties

•

•

• “Initialize Properties and Setup One-Time Calculations”

•

•

•

• “Set Property Values at Construction Time”

3-24

matlab.System.stepImpl

Purpose System output and state update equations

Syntax [output1,output2,...] = stepImpl(obj,input1,input2,...)

Description [output1,output2,...] = stepImpl(obj,input1,input2,...)
defines the algorithm to execute when you call the step method on
the specified object obj. The step method calculates the outputs and
updates the object’s state values using the inputs, properties, and state
update equations.

stepImpl is called by the step method.

Note You must set Access=protected for this method.

Tips The number of input arguments and output arguments must match the
values returned by the getNumInputsImpl and getNumOutputsImpl
methods, respectively

Input
Arguments

obj

System object handle

input*

Inputs to the step method

Output
Arguments

output

Output returned from the step method.

Examples Use the stepImpl method to increment two numbers.

methods (Access=protected)
function [y1,y2] = stepImpl(obj,x1,x2)

y1 = x1 + 1;
y2 = x2 + 1;

end

3-25

matlab.System.stepImpl

| | getNumInputsImpl | | | | getNumOutputsImpl | | | |
validateInputsImpl

•

•

• “Define Basic System Objects”

•

•

•

• “Change Number of Step Inputs or Outputs”

3-26

matlab.System.validateInputsImpl

Purpose Validate inputs to step method

Syntax validateInputsImpl(obj,input1,input2,...)

Description validateInputsImpl(obj,input1,input2,...) validates inputs to
the step method at the beginning of initialization Validation includes
checking data types, complexity, cross-input validation, and validity of
inputs controlled by a property value.

validateInputsImpl is called by the setup method before setupImpl.
validateInputsImpl executes only once.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

input*

Inputs to the setup method

Examples Validate that the input is numeric.

methods (Access=protected)
function validateInputsImpl(~,x)

if ~isnumeric(x)
error('Input must be numeric');

end
end

end

| | validatePropertiesImpl | | | | setupImpl

•

•

3-27

matlab.System.validateInputsImpl

• “Validate Property and Input Values”

3-28

matlab.System.validatePropertiesImpl

Purpose Validate property values

Syntax validatePropertiesImpl(obj)

Description validatePropertiesImpl(obj) validates interdependent or
interrelated property values at the beginning of object initialization,
such as checking that the dependent or related inputs are the same size.

validatePropertiesImpl is the first method called by the setup
method. validatePropertiesImpl also is called before the
processTunablePropertiesImpl method.

Note You must set Access=protected for this method.

Input
Arguments

obj

System object handle

Examples Validate that the useIncrement property is true and that the value of
the increment property is greater than zero.

methods (Access=protected)
function validatePropertiesImpl(obj)

if obj.useIncrement && obj.increment < 0
error('The increment value must be positive');

end
end

end

| | processTunedPropertiesImpl | | | | setupImpl | | | |
validateInputsImpl

•

•

• “Validate Property and Input Values”

3-29

matlab.system.mixin.FiniteSource

Purpose Finite source mixin class

Description matlab.system.mixin.FiniteSource is a class that defines the isDone
method, which reports the state of a finite data source, such as an audio
file.

To use this method, you must subclass from this class in addition to
the matlab.System base class. You use the following syntax as the
first line of your class definition file, where ObjectName is the name
of your object:

classdef ObjectName < matlab.System &...
matlab.system.mixin.FiniteSource

Methods isDoneImpl End-of-data flag

| | matlab.System

•

•

• “Define Finite Source Objects”

How To • “Object-Oriented Programming”

• Class Attributes

• Property Attributes

3-30

matlab.system.mixin.FiniteSource.isDoneImpl

Purpose End-of-data flag

Syntax status = isDoneImpl(obj)

Description status = isDoneImpl(obj) indicates if an end-of-data condition has
occurred. The isDone method should return false when data from a
finite source has been exhausted, typically by having read and output
all data from the source. You should also define the result of future
reads from an exhausted source in the isDoneImpl method.

isDoneImpl is called by the isDone method.

Input
Arguments

obj

System object handle

Output
Arguments

status

Logical value, true or false, that indicates if an end-of-data
condition has occurred or not, respectively.

Examples Set up isDoneImpl so the isDone method checks whether the object has
completed eight iterations.

methods (Access=private)
function bdone = isDoneImpl(obj)

bdone = obj.NumIters==8;
end

end

| | matlab.system.mixin.FiniteSource

•

•

• “Define Finite Source Objects”

3-31

matlab.system.StringSet

Purpose Set of valid string values

Description matlab.system.StringSet defines a list of valid string values for a
property. This class validates the string in the property and enables tab
completion for the property value. A StringSet allows only predefined or
customized strings as values for the property.

A StringSet uses two linked properties, which you must define in the
same class. One is a public property that contains the current string
value. This public property is displayed to the user. The other property
is a hidden property that contains the list of all possible string values.
This hidden property should also have the transient attribute so its
value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

• The string property that holds the current string can have any name.

• The property that holds the StringSet must use the same name as
the string property with the suffix “Set” appended to it. The string
set property is an instance of the matlab.system.StringSet class.

• Valid strings, defined in the StringSet, must be declared using a cell
array. The cell array cannot be empty nor can it have any empty
strings. Valid strings must be unique and are case-insensitive.

• The string property must be set to a valid StringSet value.

Examples Set the string property, Flavor, and the StringSet property,
FlavorSet, in this example.

properties
Flavor='Chocolate';

end

properties (Hidden,Transient)
FlavorSet = ...

matlab.system.StringSet({'Vanilla','Chocolate'});
end

3-32

matlab.system.StringSet

| | matlab.System

How To • “Object-Oriented Programming”

• Class Attributes

• Property Attributes

•

•

•

• “Limit Property Values to Finite String Set”

3-33

phased.ADPCACanceller

Purpose Adaptive DPCA (ADPCA) pulse canceller

Description The ADPCACanceller object implements an adaptive displaced phase
center array pulse canceller.

To compute the output signal of the space time pulse canceller:

1 Define and set up your ADPCA pulse canceller. See “Construction”
on page 3-34.

2 Call step to execute the ADPCA algorithm according to the properties
of phased.ADPCACanceller. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ADPCACanceller creates an adaptive displaced phase
center array (ADPCA) canceller System object, H. This object performs
two-pulse ADPCA processing on the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). See “Properties” on page 3-34 for the
list of available property names.

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-34

phased.ADPCACanceller

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies
the targeting direction.

Default: 'Property'

Direction

Receiving mainlobe direction (degrees)

3-35

phased.ADPCACanceller

Specify the receiving mainlobe direction of the receiving sensor
array as a column vector of length 2. The direction is specified in
the format of [AzimuthAngle; ElevationAngle] (in degrees).
Azimuth angle should be between –180 and 180. Elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the
Doppler.

'Input port' An input argument in each invocation of step specifies
the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

3-36

phased.ADPCACanceller

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before
applying the Doppler filtering. Set this property to false to
output the processing result after the Doppler filtering.

Default: false

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an
even integer. Whenever possible, the training cells are equally
divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

3-37

phased.ADPCACanceller

Methods clone Create ADPCA object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform ADPCA processing on
input data

Examples Process the data cube using an ADPCA processor. The weights are
calculated for the 71st cell of a collected data cube. The look direction
is [0 0] degrees and the Doppler is 12980 Hz.

load STAPExampleData; % load radar data cube
Hs = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);
Hresp = phased.AngleDopplerResponse(...

'SensorArray',Hs.SensorArray,...
'OperatingFrequency',Hs.OperatingFrequency,...
'PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

3-38

phased.ADPCACanceller

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.AngleDopplerResponse | phased.DPCACanceller |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

3-39

phased.ADPCACanceller.clone

Purpose Create ADPCA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-40

phased.ADPCACanceller.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-41

phased.ADPCACanceller.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-42

phased.ADPCACanceller.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ADPCACanceller System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-43

phased.ADPCACanceller.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-44

phased.ADPCACanceller.step

Purpose Perform ADPCA processing on input data

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(___ ,DOP)
[Y,W] = step(___)

Description Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation
algorithm to the input data X. The algorithm calculates the processing
weights according to the range cell specified by CUTIDX. This syntax
is available when the DirectionSource property is 'Property' and
the DopplerSource property is 'Property'. The receiving mainlobe
direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering,
depending on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe
direction. This syntax is available when the DirectionSource property
is 'Input port' and the DopplerSource property is 'Property'.

Y = step(___ ,DOP) uses DOP as the targeting Doppler frequency. This
syntax is available when the DopplerSource property is 'Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-45

phased.ADPCACanceller.step

Input
Arguments

H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric
array whose dimensions are (range, channels, pulses).

CUTIDX

Range cell.

ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in
the form [AzimuthAngle; ElevationAngle], in degrees. The
azimuth angle must be between –180 and 180. The elevation
angle must be between –90 and 90.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output
Arguments

Y

Result of applying pulse cancelling to the input data. The
meaning and dimensions of Y depend on the PreDopplerOutput
property of H:

• If PreDopplerOutput is true, Y contains the pre-Doppler data.
Y is an M-by-(P–1) matrix. Each column in Y represents the
result obtained by cancelling the two successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying
an FFT-based Doppler filter to the pre-Doppler data. The
targeting Doppler is the Doppler property value. Y is a column
vector of length M.

3-46

phased.ADPCACanceller.step

W

Processing weights the pulse canceller used to obtain the
pre-Doppler data. The dimensions of W depend on the
PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The
columns in W correspond to successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length
(N*P).

Examples Process the example radar data cube, STAPExampleData.mat, using
an ADPCA processor. The weights are calculated for the 71st cell
of a collected radar data cube. The look direction is [0; 0] degrees
and the Doppler frequency is 12980 Hz. After constructing the
phased.ADPCACanceller object, use step to process the data.

load STAPExampleData; % load radar data cube
Hs = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

See Also uv2azel | phitheta2azel

3-47

phased.AngleDopplerResponse

Purpose Angle-Doppler response

Description The AngleDopplerResponse object calculates the angle-Doppler
response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See
“Construction” on page 3-48.

2 Call step to compute the angle-Doppler response of the input signal
according to the properties of phased.AngleDopplerResponse. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.AngleDopplerResponse creates an angle-Doppler response
System object, H. This object calculates the angle-Doppler response of
the input data.

H = phased.AngleDopplerResponse(Name,Value) creates
angle-Doppler object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-48

phased.AngleDopplerResponse

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input
signal as a positive scalar.

Default: 1

ElevationAngleSource

Source of elevation angle

Specify whether the elevation angle comes from the
ElevationAngle property of this object or from an input
argument in step. Values of this property are:

'Property' The ElevationAngle property of this
object specifies the elevation angle.

'Input port' An input argument in each invocation
of step specifies the elevation angle.

Default: 'Property'

ElevationAngle

Elevation angle

3-49

phased.AngleDopplerResponse

Specify the elevation angle in degrees used to calculate
the angle-Doppler response as a scalar. The angle must be
between –90 and 90. This property applies when you set the
ElevationAngleSource property to 'Property'.

Default: 0

NumAngleSamples

Number of samples in angular domain

Specify the number of samples in the angular domain used to
calculate the angle-Doppler response as a positive integer. This
value must be greater than 2.

Default: 256

NumDopplerSamples

Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to
calculate the angle-Doppler response as a positive integer. This
value must be greater than 2.

Default: 256

Methods clone Create angle-Doppler response
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

3-50

phased.AngleDopplerResponse

plotResponse Plot angle-Doppler response

release Allow property value and input
characteristics changes

step Calculate angle-Doppler response

Examples Calculate the angle-Doppler response of the 190th cell of a collected
data cube.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
% Construct angle-Doppler response object
hadresp = phased.AngleDopplerResponse(...

'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'PRF',STAPEx_PRF);

% Use the step method to obtain the angle-Doppler response
[resp,ang_grid,dop_grid] = step(hadresp,x);
% Plot the angle-Doppler response
contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle'); ylabel('Doppler');

3-51

phased.AngleDopplerResponse

Algorithms phased.AngleDopplerResponse generates the response using a
conventional beamformer and an FFT-based Doppler filter. For further
details, see [1].

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

See Also phased.ADPCACanceller | phased.DPCACanceller |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

3-52

phased.AngleDopplerResponse.clone

Purpose Create angle-Doppler response object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-53

phased.AngleDopplerResponse.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-54

phased.AngleDopplerResponse.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-55

phased.AngleDopplerResponse.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
AngleDopplerResponse System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-56

phased.AngleDopplerResponse.plotResponse

Purpose Plot angle-Doppler response

Syntax plotResponse(H,X)
plotResponse(H,X,ELANG)
plotResponse(___ ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,X) plots the angle-Doppler response of the data in X
in decibels. This syntax is available when the ElevationAngleSource
property is 'Property'.

plotResponse(H,X,ELANG) plots the angle-Doppler response calculated
using the specified elevation angle ELANG. This syntax is available when
the ElevationAngleSource property is 'Input port'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns the handle of the image in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Angle-Doppler response object.

X

Input data.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding

3-57

phased.AngleDopplerResponse.plotResponse

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NormalizeDoppler

Set this value to true to normalize the Doppler frequency. Set
this value to false to plot the angle-Doppler response without
normalizing the Doppler frequency.

Default: false

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Plot the angle-Doppler response of 190th cell of a collected data cube.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
hadresp = phased.AngleDopplerResponse(...

'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'PRF',STAPEx_PRF);

plotResponse(hadresp,x,'NormalizeDoppler',true);

3-58

phased.AngleDopplerResponse.plotResponse

See Also uv2azel | phitheta2azel

3-59

phased.AngleDopplerResponse.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-60

phased.AngleDopplerResponse.step

Purpose Calculate angle-Doppler response

Syntax [RESP,ANG_GRID,DOP_GRID] = step(H,X)
[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG)

Description [RESP,ANG_GRID,DOP_GRID] = step(H,X) calculates the angle-Doppler
response of the data X. RESP is the complex angle-Doppler response.
ANG_GRID and DOP_GRID provide the angle samples and Doppler
samples, respectively, at which the angle-Doppler response is evaluated.
This syntax is available when the ElevationAngleSource property
is 'Property'.

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG) calculates the
angle-Doppler response using the specified elevation angle ELANG.
This syntax is available when the ElevationAngleSource property is
'Input port'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Angle-Doppler response object.

X

Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the
number of elements of the array specified in the SensorArray
property of H.

3-61

phased.AngleDopplerResponse.step

If X is a vector, the number of rows must be an integer multiple of
the number of elements of the array specified in the SensorArray
property of H. In addition, the multiple must be at least 2.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Output
Arguments

RESP

Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P
is determined by the NumDopplerSamples property of H and Q is
determined by the NumAngleSamples property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated.
ANG_GRID is a column vector of length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is
evaluated. DOP_GRID is a column vector of length P.

Examples Calculate the angle-Doppler response of the 190th cell of a collected
data cube.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
% Construct angle-Doppler response object
hadresp = phased.AngleDopplerResponse(...

'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'PRF',STAPEx_PRF);

% Use the step method to obtain the angle-Doppler response
[resp,ang_grid,dop_grid] = step(hadresp,x);
% Plot the angle-Doppler response

3-62

phased.AngleDopplerResponse.step

contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle'); ylabel('Doppler');

Algorithms phased.AngleDopplerResponse generates the response using a
conventional beamformer and an FFT-based Doppler filter. For further
details, see [1].

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

See Also uv2azel | phitheta2azel | azel2uv | azel2phitheta

3-63

phased.ArrayGain

Purpose Sensor array gain

Description The ArrayGain object calculates the array gain for a sensor array. The
array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. It is related to the array response but is
not the same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on
page 3-64.

2 Call step to estimate the gain according to the properties of
phased.ArrayGain. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.ArrayGain creates an array gain System object, H. This
object calculates the array gain of a 2-element uniform linear array for
specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object,
H, with the specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

3-64

phased.ArrayGain

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Methods clone Create array gain object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate array gain of sensor
array

Definitions Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. You can express the array gain as follows:

3-65

phased.ArrayGain

SNR
SNR

w vsv w

w Nw
s
N

w vv w

w w

H H

H H H

H
out

in

In this equation:

• w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument
in the step method syntax.

• v is the steering vector representing the array response toward a
given direction. When you call the step method, the ANG argument
specifies the direction.

• s is the input signal power.

• N is the noise power.

• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array
gain is the square of the array response normalized by the number
of elements in the array.

Examples Calculate the array gain for a uniform linear array at the direction
of 30 degrees azimuth and 20 degrees elevation. The array operating
frequency is 300 MHz.

ha = phased.ULA(4);
hag = phased.ArrayGain('SensorArray',ha);
g = step(hag,3e8,[30;20]);

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

3-66

phased.ArrayGain

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayResponse | phased.ElementDelay |
phased.SteeringVector |

3-67

phased.ArrayGain.clone

Purpose Create array gain object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-68

phased.ArrayGain.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-69

phased.ArrayGain.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-70

phased.ArrayGain.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ArrayGain
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-71

phased.ArrayGain.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-72

phased.ArrayGain.step

Purpose Calculate array gain of sensor array

Syntax G = step(H,FREQ,ANG)
G = step(H,FREQ,ANG,WEIGHTS)
G = step(H,FREQ,ANG,STEERANGLE)
G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

Description G = step(H,FREQ,ANG) returns the array gain G of the array for the
operating frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on
the sensor array. This syntax is available when you set the
WeightsInputPort property to true.

G = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the
subarray steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array gain object.

3-73

phased.ArrayGain.step

FREQ

Operating frequencies of array in hertz. FREQ is a row
vector of length L. Typical values are within the range
specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of
array. The frequency range property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L
matrix or a column vector of length N. N is the number of
subarrays if H.SensorArray contains subarrays, or the number
of elements otherwise. L is the number of frequencies specified
in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the
weights at the corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in
FREQ.

STEERANGLE

3-74

phased.ArrayGain.step

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

G

Gain of sensor array, in decibels. G is an M-by-L matrix. G
contains the gain at the M angles specified in ANG and the L
frequencies specified in FREQ.

Definitions Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. You can express the array gain as follows:

SNR
SNR

w vsv w

w Nw
s
N

w vv w

w w

H H

H H H

H
out

in

In this equation:

• w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument
in the step method syntax.

• v is the steering vector representing the array response toward a
given direction. When you call the step method, the ANG argument
specifies the direction.

3-75

phased.ArrayGain.step

• s is the input signal power.

• N is the noise power.

• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array
gain is the square of the array response normalized by the number
of elements in the array.

Examples Construct a uniform linear array with six elements. The array operates
at 1 GHz and the array elements are spaced at one half the operating
frequency wavelength. Find the array gain in decibels for the direction
45 degrees azimuth and 10 degrees elevation.

% operating frequency 1 GHz
fc = 1e9;
% 1 GHz wavelength
lambda = physconst('LightSpeed')/fc;
% construct the ULA
hULA = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);
% construct the array gain object with the ULA as the sensor array
hgain = phased.ArrayGain('SensorArray',hULA);
% use step method to determine array gain at the specified
% operating frequency and angle
arraygain = step(hgain,fc,[45;10]);
% array gain is approximately -17.93 dB

See Also uv2azel | phitheta2azel

3-76

phased.ArrayResponse

Purpose Sensor array response

Description The ArrayResponse object calculates the complex-valued response of
a sensor array.

To compute the response of the array for specified directions:

1 Define and set up your array response calculator. See “Construction”
on page 3-77.

2 Call step to estimate the response according to the properties of
phased.ArrayResponse. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ArrayResponse creates an array response System object,
H. This object calculates the response of a sensor array for the specified
directions. By default, a 2-element uniform linear array (ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-77

phased.ArrayResponse

Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Methods clone Create array response object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate array response of
sensor array

Examples Calculate the array response for a 4-element uniform linear array in
the direction of 30 degrees azimuth and 20 degrees elevation. Assume
the array’s operating frequency is 300 MHz.

ha = phased.ULA(4);
har = phased.ArrayResponse('SensorArray',ha);
resp = step(har,3e8,[30;20]);
% Plot the array response in dB (azimuth cut--normalized power)
plotResponse(ha,3e8,physconst('LightSpeed'));

3-78

phased.ArrayResponse

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ElementDelay |
phased.ConformalArray/plotResponse | phased.ULA/plotResponse
| phased.URA/plotResponse | phased.SteeringVector |

3-79

phased.ArrayResponse.clone

Purpose Create array response object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-80

phased.ArrayResponse.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-81

phased.ArrayResponse.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-82

phased.ArrayResponse.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ArrayResponse
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-83

phased.ArrayResponse.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-84

phased.ArrayResponse.step

Purpose Calculate array response of sensor array

Syntax RESP = step(H,FREQ,ANG)
RESP = step(H,FREQ,ANG,WEIGHTS)
RESP = step(H,FREQ,ANG,STEERANGLE)
RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

Description RESP = step(H,FREQ,ANG) returns the array response RESP at
operating frequencies specified in FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS
on the sensor array. This syntax is available when you set the
WeightsInputPort property to true.

RESP = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as
the subarray steering angle. This syntax is available when you
configure H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array response object.

3-85

phased.ArrayResponse.step

FREQ

Operating frequencies of array in hertz. FREQ is a row
vector of length L. Typical values are within the range
specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of
array. The frequency range property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.
The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L
matrix or a column vector of length N. N is the number of
subarrays if H.SensorArray contains subarrays, or the number
of elements otherwise. L is the number of frequencies specified
in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the
weights at the corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in
FREQ.

STEERANGLE

3-86

phased.ArrayResponse.step

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

RESP

Response of sensor array. RESP is an M-by-L matrix. RESP
contains the array responses at the M angles specified in ANG and
the L frequencies specified in FREQ.

Examples Find the array response for a 6-element uniform linear array operating
at 1 GHz. The array elements are spaced at one half the operating
frequency wavelength. The incident angle is 45 degrees azimuth and
10 degrees elevation.

fc = 1e9;
% 1 GHz wavelength
lambda = physconst('LightSpeed')/fc;
% construct the ULA
hULA = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);
% construct array response object with the ULA as sensor array
har = phased.ArrayResponse('SensorArray',hULA);
% use step to obtain array response at 1 GHz for an incident
% angle of 45 degrees azimuth and 10 degrees elevation
resp = step(har,fc,[45;10]);

See Also uv2azel | phitheta2azel

3-87

phased.BarrageJammer

Purpose Barrage jammer

Description The BarrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page
3-88.

2 Call step to compute the jammer output according to the properties
of phased.BarrageJammer. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.BarrageJammer creates a barrage jammer System object, H.
This object generates a complex white Gaussian noise jamming signal.

H = phased.BarrageJammer(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.BarrageJammer(E,Name,Value) creates a barrage jammer
object, H, with the ERP property set to E and other specified property
Names set to the specified Values.

Properties ERP

Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the
jamming signal as a positive scalar.

Default: 5000

SamplesPerFrameSource

Source of number of samples per frame

3-88

phased.BarrageJammer

Specify whether the number of samples of the jamming signal
comes from the SamplesPerFrame property of this object or from
an input argument in step. Values of this property are:

'Property' The SamplesPerFrame property of
this object specifies the number of
samples of the jamming signal.

'Input port' An input argument in each invocation
of step specifies the number of
samples of the jamming signal.

Default: 'Property'

SamplesPerFrame

Number of samples per frame

Specify the number of samples in the output jamming signal
as a positive integer. This property applies when you set the
SamplesPerFrameSource property to 'Property'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

3-89

phased.BarrageJammer

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox™
software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create barrage jammer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

3-90

phased.BarrageJammer

release Allow property value and input
characteristics changes

reset Reset random number generator
for noise generation

step Generate noise jamming signal

Examples Create a barrage jammer with an effective radiated power of 1000 w
and plot the magnitude of that jammer’s output. Your plot might vary
because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

3-91

phased.BarrageJammer

References [1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.Platform | phased.RadarTarget |

3-92

phased.BarrageJammer.clone

Purpose Create barrage jammer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-93

phased.BarrageJammer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-94

phased.BarrageJammer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-95

phased.BarrageJammer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the BarrageJammer
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-96

phased.BarrageJammer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-97

phased.BarrageJammer.reset

Purpose Reset random number generator for noise generation

Syntax reset(H)

Description reset(H) resets the states of the BarrageJammer object, H. This method
resets the random number generator state if the SeedSource property
is set to 'Property'.

3-98

phased.BarrageJammer.step

Purpose Generate noise jamming signal

Syntax Y = step(H)
Y = step(H,N)

Description Y = step(H) returns a column vector, Y, that is a complex white
Gaussian noise jamming signal. The power of the jamming signal is
specified by the ERP property. The length of the jamming signal is
specified by the SamplesPerFrame property. This syntax is available
when the SamplesPerFrameSource property is 'Property'.

Y = step(H,N) returns the jamming signal with length N. This syntax
is available when the SamplesPerFrameSource property is 'Input
port'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Create a barrage jammer with an effective radiated power of 1000 w
and plot the magnitude of that jammer’s output. Your plot might vary
because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

3-99

phased.BarrageJammer.step

3-100

phased.BeamscanEstimator

Purpose Beamscan spatial spectrum estimator for ULA

Description The BeamscanEstimator object calculates a beamscan spatial spectrum
estimate for a uniform linear array.

To estimate the spatial spectrum:

1 Define and set up your beamscan spatial spectrum estimator. See
“Construction” on page 3-101.

2 Call step to estimate the spatial spectrum according to the properties
of phased.BeamscanEstimator. The behavior of step is specific to
each object in the toolbox.

Construction H = phased.BeamscanEstimator creates a beamscan spatial spectrum
estimator System object, H. The object estimates the incoming signal’s
spatial spectrum using a narrowband conventional beamformer for a
uniform linear array (ULA).

H = phased.BeamscanEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-101

phased.BeamscanEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of elements by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles
are broadside angles and must be between –90 and 90, inclusive.
You must specify the angles in ascending order.

3-102

phased.BeamscanEstimator

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create beamscan spatial
spectrum estimator object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

3-103

phased.BeamscanEstimator

reset Reset states of beamscan spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with an element spacing of one meter. The antenna operating
frequency is 150 MHz. The actual direction of the first signal is 10
degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 60 degrees in azimuth and –5 degrees in elevation. This
example also plots the spatial spectrum.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.BeamscanEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
plotSpectrum(hdoa);

3-104

phased.BeamscanEstimator

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002, pp. 1142–1143.

3-105

phased.BeamscanEstimator

See Also broadside2azphased.BeamscanEstimator2D |

3-106

phased.BeamscanEstimator.clone

Purpose Create beamscan spatial spectrum estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-107

phased.BeamscanEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-108

phased.BeamscanEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-109

phased.BeamscanEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
BeamscanEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-110

phased.BeamscanEstimator.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

Title

String to use as title of figure.

Default: Empty string

3-111

phased.BeamscanEstimator.plotSpectrum

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.BeamscanEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
plotSpectrum(hdoa);

3-112

phased.BeamscanEstimator.plotSpectrum

3-113

phased.BeamscanEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-114

phased.BeamscanEstimator.reset

Purpose Reset states of beamscan spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the BeamscanEstimator object, H.

3-115

phased.BeamscanEstimator.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator, H. X is a matrix whose columns correspond to channels. Y is
a column vector representing the magnitude of the estimated spatial
spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a row vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));

3-116

phased.BeamscanEstimator.step

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);

See Also azel2uv | azel2phitheta

3-117

phased.BeamscanEstimator2D

Purpose 2-D beamscan spatial spectrum estimator

Description The BeamscanEstimator2D object calculates a 2-D beamscan spatial
spectrum estimate.

To estimate the spatial spectrum:

1 Define and set up your 2-D beamscan spatial spectrum estimator.
See “Construction” on page 3-118.

2 Call step to estimate the spatial spectrum according to the properties
of phased.BeamscanEstimator2D. The behavior of step is specific to
each object in the toolbox.

Construction H = phased.BeamscanEstimator2D creates a 2-D beamscan spatial
spectrum estimator System object, H. The object estimates the signal’s
spatial spectrum using a narrowband conventional beamformer.

H = phased.BeamscanEstimator2D(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-118

phased.BeamscanEstimator2D

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles

Specify the azimuth scan angles (in degrees) as a real vector. The
angles must be between –180 and 180, inclusive. You must specify
the angles in ascending order.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or
scalar. The angles must be within [–90 90]. You must specify the
angles in an ascending order.

Default: 0

3-119

phased.BeamscanEstimator2D

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create 2-D beamscan spatial
spectrum estimator object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

3-120

phased.BeamscanEstimator2D

reset Reset states of 2-D beamscan
spatial spectrum estimator object

step Perform spatial spectrum
estimation

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees
in azimuth and 20 degrees in elevation. This example also plots the
spatial spectrum.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
lambda = physconst('LightSpeed')/fc;
ang1 = [-37; 0]; ang2 = [17; 20];
x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x);
plotSpectrum(hdoa);

3-121

phased.BeamscanEstimator2D

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.BeamscanEstimator | uv2azel | phitheta2azel

3-122

phased.BeamscanEstimator2D.clone

Purpose Create 2-D beamscan spatial spectrum estimator object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-123

phased.BeamscanEstimator2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-124

phased.BeamscanEstimator2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-125

phased.BeamscanEstimator2D.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
BeamscanEstimator2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-126

phased.BeamscanEstimator2D.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

Title

String to use as title of figure.

Default: Empty string

3-127

phased.BeamscanEstimator2D.plotSpectrum

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
lambda = physconst('LightSpeed')/fc;
ang1 = [-37; 0]; ang2 = [17; 20];
x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x);
plotSpectrum(hdoa);

3-128

phased.BeamscanEstimator2D.plotSpectrum

3-129

phased.BeamscanEstimator2D.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-130

phased.BeamscanEstimator2D.reset

Purpose Reset states of 2-D beamscan spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the BeamscanEstimator2D object, H.

3-131

phased.BeamscanEstimator2D.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X is a matrix whose columns correspond to channels. Y
is a matrix representing the magnitude of the estimated 2-D spatial
spectrum. Y has a row dimension equal to the number of elevation
angles specified in ElevationScanAngles and a column dimension
equal to the number of azimuth angles specified in AzimuthScanAngles.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a two row matrix where the first row represents the estimated
azimuth and the second row represents the estimated elevation (in
degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;

3-132

phased.BeamscanEstimator2D.step

lambda = physconst('LightSpeed')/fc;
ang1 = [-37; 0]; ang2 = [17; 20];
x = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x);

See Also azel2uv | azel2phitheta

3-133

phased.BeamspaceESPRITEstimator

Purpose Beamspace ESPRIT direction of arrival (DOA) estimator

Description The BeamspaceESPRITEstimator object computes a DOA estimate for
a uniform linear array. The computation uses the estimation of signal
parameters via rotational invariance techniques (ESPRIT) algorithm
in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
3-134.

2 Call step to estimate the DOA according to the properties of
phased.BeamspaceESPRITEstimator. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT
DOA estimator System object, H. The object estimates the signal’s
direction of arrival using the beamspace ESPRIT algorithm with a
uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator(Name,Value) creates object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

3-134

phased.BeamspaceESPRITEstimator

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

3-135

phased.BeamspaceESPRITEstimator

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion and
'MDL' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

Default: 1

Method

Type of least square method

Specify the least squares method used for ESPRIT as one of 'TLS'
or 'LS'. 'TLS' refers to total least squares and 'LS' refers to
least squares.

Default: 'TLS'

BeamFanCenter

Beam fan center direction (in degrees)

Specify the direction of the center of the beam fan (in degrees) as
a real scalar value between –90 and 90. This property is tunable.

Default: 0

NumBeamsSource

Source of number of beams

3-136

phased.BeamspaceESPRITEstimator

Specify the source of the number of beams as one of 'Auto' or
'Property'. If you set this property to 'Auto', the number of
beams equals N–L, where N is the number of array elements and
L is the value of the SpatialSmoothing property.

Default: 'Auto'

NumBeams

Number of beams

Specify the number of beams as a positive scalar integer.
The lower the number of beams, the greater the reduction in
computational cost. This property applies when you set the
NumBeamsSource to 'Property'.

Default: 2

Methods clone Create beamspace ESPRIT DOA
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in

3-137

phased.BeamspaceESPRITEstimator

azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
% construct beamspace ESPRIT estimator
hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

% use the step method to obtain the direction of arrival estimates
doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60]);

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2azphased.ESPRITEstimator |

3-138

phased.BeamspaceESPRITEstimator.clone

Purpose Create beamspace ESPRIT DOA estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-139

phased.BeamspaceESPRITEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-140

phased.BeamspaceESPRITEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-141

phased.BeamspaceESPRITEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
BeamspaceESPRITEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-142

phased.BeamspaceESPRITEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-143

phased.BeamspaceESPRITEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
% construct beamspace ESPRIT estimator
hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

% use the step method to obtain the direction of arrival estimates

3-144

phased.BeamspaceESPRITEstimator.step

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60]);

3-145

phased.CFARDetector

Purpose Constant false alarm rate (CFAR) detector

Description The CFARDetector object implements a constant false-alarm rate
detector.

To perform the detection:

1 Define and set up your CFAR detector. See “Construction” on page
3-146.

2 Call step to perform CFAR detection according to the properties of
phased.CFARDetector. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.CFARDetector creates a constant false alarm rate (CFAR)
detector System object, H. The object performs CFAR detection on the
input data.

H = phased.CFARDetector(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Method

CFAR algorithm

Specify the algorithm of the CFAR detector as a string. Values of
this property are:

'CA' Cell-averaging CFAR

'GOCA' Greatest-of cell-averaging CFAR

'OS' Order statistic CFAR

'SOCA' Smallest-of cell-averaging CFAR

Default: 'CA'

3-146

phased.CFARDetector

Rank

Rank of order statistic

Specify the rank of the order statistic as a positive integer
scalar. The value must be less than or equal to the value of the
NumTrainingCells property. This property applies only when you
set the Method property to 'OS'.

Default: 1

NumGuardCells

Number of guard cells

Specify the number of guard cells used in training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in training as an even
integer. Whenever possible, the training cells are equally divided
before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

ThresholdFactor

Methods of obtaining threshold factor

Specify whether the threshold factor comes from an automatic
calculation, the CustomThresholdFactor property of this object,
or an input argument in step. Values of this property are:

3-147

phased.CFARDetector

'Auto' The application calculates the
threshold factor automatically
based on the desired probability
of false alarm specified in the
ProbabilityFalseAlarm property.
The calculation assumes each
independent signal in the input is a
single pulse coming out of a square
law detector with no pulse integration.
The calculation also assumes the noise
is white Gaussian.

'Custom' The CustomThresholdFactor
property of this object specifies the
threshold factor.

'Input port' An input argument in each invocation
of step specifies the threshold factor.

Default: 'Auto'

ProbabilityFalseAlarm

Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between
0 and 1 (not inclusive). This property applies only when you set
the ThresholdFactor property to 'Auto'.

Default: 0.1

CustomThresholdFactor

Custom threshold factor

Specify the custom threshold factor as a positive scalar. This
property applies only when you set the ThresholdFactor property
to 'Custom'. This property is tunable.

3-148

phased.CFARDetector

Default: 1

ThresholdOutputPort

Output detection threshold

To obtain the detection threshold, set this property to true and
use the corresponding output argument when invoking step.
If you do not want to obtain the detection threshold, set this
property to false.

Default: false

Methods clone Create CFAR detector object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform CFAR detection

Examples Perform cell-averaging CFAR detection on a given Gaussian noise vector
with a desired probability of false alarm of 0.1. Assume that the data is
from a square law detector and no pulse integration is performed. Use
50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of input.

rng(5);
hdet = phased.CFARDetector('NumTrainingCells',50,...

'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);

3-149

phased.CFARDetector

N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));
dresult = step(hdet,abs(x).^2,1:N);
Pfa = sum(dresult)/N;

Algorithms phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise
estimate. The next table indicates how the detector forms the noise
estimate, depending on the Method property value.

Method Noise Estimate

'CA' Use the average of the values in all the training
cells.

'GOCA' Select the greater of the averages in the front
training cells and rear training cells.

'OS' Sort the values in the training cells in ascending
order. Select the Nth item, where N is the value
of the Rank property.

'SOCA' Select the smaller of the averages in the front
training cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the
threshold.

3 Compare the value in the test cell against the threshold to determine
whether the target is present or absent. If the value is greater than
the threshold, the target is present.

For further details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also npwgnthreshphased.MatchedFilter | phased.TimeVaryingGain |

3-150

phased.CFARDetector.clone

Purpose Create CFAR detector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-151

phased.CFARDetector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-152

phased.CFARDetector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-153

phased.CFARDetector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the CFARDetector
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-154

phased.CFARDetector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-155

phased.CFARDetector.step

Purpose Perform CFAR detection

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,THFAC)
[Y,TH] = step(___)

Description Y = step(H,X,CUTIDX) performs the CFAR detection on the real input
data X. X can be either a column vector or a matrix. Each row of X is a
cell and each column of X is independent data. Detection is performed
along each column for the cells specified in CUTIDX. CUTIDX must be
a vector of positive integers with each entry specifying the index of a
cell under test (CUT). Y is an M-by-N matrix containing the logical
detection result for the cells in X. M is the number of indices specified in
CUTIDX, and N is the number of independent signals in X.

Y = step(H,X,CUTIDX,THFAC) uses THFAC as the threshold factor used
to calculate the detection threshold. This syntax is available when you
set the ThresholdFactor property to 'Input port'. THFAC must be a
positive scalar.

[Y,TH] = step(___) returns additional output, TH, as the detection
threshold for each cell under test in X. This syntax is available when
you set the ThresholdOutputPort property to true. TH has the same
dimensionality as Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Perform cell-averaging CFAR detection on a given Gaussian noise vector
with a desired probability of false alarm of 0.1. Assume that the data is

3-156

phased.CFARDetector.step

from a square law detector and no pulse integration is performed. Use
50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of input.

rng(5);
hdet = phased.CFARDetector('NumTrainingCells',50,...

'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);
N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));
dresult = step(hdet,abs(x).^2,1:N);
Pfa = sum(dresult)/N;

Algorithms phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise
estimate. The next table indicates how the detector forms the noise
estimate, depending on the Method property value.

Method Noise Estimate

'CA' Use the average of the values in all the training
cells.

'GOCA' Select the greater of the averages in the front
training cells and rear training cells.

'OS' Sort the values in the training cells in ascending
order. Select the Nth item, where N is the value
of the Rank property.

'SOCA' Select the smaller of the averages in the front
training cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the
threshold.

3 Compare the value in the test cell against the threshold to determine
whether the target is present or absent. If the value is greater than
the threshold, the target is present.

3-157

phased.CFARDetector.step

For details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

3-158

phased.Collector

Purpose Narrowband signal collector

Description The Collector object implements a narrowband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your signal collector. See “Construction” on page
3-159.

2 Call step to collect the signal according to the properties of
phased.Collector. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.Collector creates a narrowband signal collector System
object, H. The object collects incident narrowband signals from given
directions using a sensor array or a single element.

H = phased.Collector(Name,Value) creates a collector object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Sensor

Handle of sensor

Specify the sensor as a sensor array object or an element object
in the phased package. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-159

phased.Collector

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Wavefront

Type of incoming wavefront

Specify the type of incoming wavefront as one of 'Plane', or
'Unspecified':

• If you set the Wavefront property to 'Plane', the input signals
are multiple plane waves impinging on the entire array. Each
plane wave is received by all collecting elements. If the Sensor
property is an array that contains subarrays, the Wavefront
property must be 'Plane'.

• If you set the Wavefront property to 'Unspecified', the input
signals are individual waves impinging on individual sensors.

Default: 'Plane'

3-160

phased.Collector

Methods clone Create collector object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Collect signals

Examples Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect signals with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

3-161

phased.Collector

ha = phased.ULA('NumElements',3);
hc = phased.Collector('Sensor',ha,'OperatingFrequency',1e9,...

'Wavefront','Unspecified');
x = rand(10,3); % Each column is a separate signal for one element
incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals
y = step(hc,x,incidentAngle);

Algorithms If the Wavefront property value is 'Plane', phased.Collector
collects each plane wave signal using the phase approximation of the
time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector
collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.WidebandCollector |

3-162

phased.Collector.clone

Purpose Create collector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-163

phased.Collector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-164

phased.Collector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-165

phased.Collector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Collector
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-166

phased.Collector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-167

phased.Collector.step

Purpose Collect signals

Syntax Y = step(H,X,ANG)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,WEIGHTS,STEERANGLE)

Description Y = step(H,X,ANG) collects signals X arriving from directions ANG. The
collection process depends on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects
all the far field signals in X. Each column of Y contains the output of
the corresponding element in response to all the signals in X.

• If Wavefront has the value 'Unspecified', each collecting element
collects only one impinging signal from X. Each column of Y
contains the output of the corresponding element in response to the
corresponding column of X. The 'Unspecified' option is available
when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

3-168

phased.Collector.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Collector object.

X

Arriving signals. Each column of X represents a separate signal.
The specific interpretation of X depends on the Wavefront
property of H.

Wavefront
Property
Value

Description

'Plane' Each column of X is a far field signal.

'Unspecified' Each column of X is the signal impinging
on the corresponding element. In this case,
the number of columns in X must equal the
number of collecting elements in the Sensor
property.

ANG

Incident directions of signals, specified as a two-row matrix.
Each column specifies the incident direction of the corresponding
column of X. Each column of ANG has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

3-169

phased.Collector.step

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where
M is the number of collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between –180 and 180 degrees, inclusive.
The elevation angle must be between –90 and 90 degrees,
inclusive.

Output
Arguments

Y

Collected signals. Each column of Y contains the output of the
corresponding element. The output is the response to all the
signals in X, or one signal in X, depending on the Wavefront
property of H.

Examples Construct a 4-element uniform linear array. The array operating
frequency is 1 GHz. The array element spacing is half the operating
frequency wavelength. Model the collection of a 200-Hz sine wave
incident on the array from 45 degrees azimuth, 10 degrees elevation
from the far field.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
hULA = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);
t = linspace(0,1,1e3);
x = cos(2*pi*200*t)';
% construct the collector object.
hc = phased.Collector('Sensor',hULA,...

'PropagationSpeed',physconst('LightSpeed'),...
'Wavefront','Plane','OperatingFrequency',fc);

% incident angle is 45 degrees azimuth, 10 degrees elevation

3-170

phased.Collector.step

incidentangle = [45;10];
% collect the incident waveform at the ULA
receivedsig = step(hc,x,incidentangle);

Algorithms If the Wavefront property value is 'Plane', phased.Collector
collects each plane wave signal using the phase approximation of the
time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector
collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

3-171

phased.ConformalArray

Purpose Conformal array

Description The ConformalArray object constructs a conformal array. A conformal
array can have elements in any position pointing in any direction.

To compute the response for each element in the array for specified
directions:

1 Define and set up your conformal array. See “Construction” on page
3-172.

2 Call step to compute the response according to the properties of
phased.ConformalArray. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ConformalArray creates a conformal array System object,
H. The object models a conformal array formed with identical sensor
elements.

H = phased.ConformalArray(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.ConformalArray(POS,NV,Name,Value) creates a
conformal array object, H, with the ElementPosition property set
to POS, the ElementNormal property set to NV, and other specified
property Names set to the specified Values. POS and NV are value-only
arguments. To specify a value-only argument, you must also specify
all preceding value-only arguments. You can specify name-value
arguments in any order.

Properties Element

Element of array

Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

3-172

phased.ConformalArray

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

ElementPosition

Element positions

ElementPosition specifies the positions of the elements in the
conformal array. ElementPosition must be a 3-by-N matrix,
where N indicates the number of elements in the conformal array.
Each column of ElementPosition represents the position, in the
form [x; y; z] (in meters), of a single element in the array’s local
coordinate system. The local coordinate system has its origin at
an arbitrary point. The default value of this property represents a
single element at the origin of the local coordinate system.

Default: [0; 0; 0]

ElementNormal

Element normal directions

ElementNormal specifies the normal directions of the elements
in the conformal array. ElementNormal must be a 2-by-N
matrix, where N indicates the number of elements in the array.
Each column of ElementNormal specifies the normal direction
of the corresponding element in the form [azimuth; elevation]
(in degrees) defined in the local coordinate system. The local
coordinate system aligns the positive x-axis with the direction
normal to the conformal array.

You can use the ElementPosition and ElementNormal properties
to represent any arrangement in which pairs of elements differ
by certain transformations. The transformations can combine
translation, azimuth rotation, and elevation rotation. However,
you cannot use transformations that require rotation about the
normal.

Default: [0; 0]

3-173

phased.ConformalArray

Methods clone Create conformal array object
with same property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of array

release Allow property value and input
characteristics changes

step Output responses of array
elements

viewArray View array geometry

Examples Construct an 8-element uniform circular array (UCA) and plot its
azimuth responses. Assume the operating frequency is 1 GHz and the
wave propagation speed is 3e8 m/s.

N = 8; azang = (0:N-1)*360/N-180;
ha = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9; c = 3e8;
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

3-174

phased.ConformalArray

References [1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and
Design. Piscataway, NJ: IEEE Press, 2006.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.CosineAntennaElement | phased.CustomAntennaElement
| phased.IsotropicAntennaElement | phased.ULA | phased.URA |
uv2azel | phitheta2azel

3-175

phased.ConformalArray

Related
Examples

• Phased Array Gallery

3-176

../examples/phased-array-gallery.html

phased.ConformalArray.clone

Purpose Create conformal array object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-177

phased.ConformalArray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

3-178

phased.ConformalArray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at an 8-element uniform circular array.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

N = 8; azang = (0:N-1)*360/N-180;
hArray = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

y = collectPlaneWave(hArray,randn(4,2),[10 30],1e8);

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-179

phased.ConformalArray.collectPlaneWave

See Also uv2azel | phitheta2azel

3-180

phased.ConformalArray.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
conformal array H. POS is an 3xN matrix where N is the number of
elements in H. Each column of POS defines the position of an element in
the local coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the conformal array,
enter phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector ELEIDX.

Examples Construct a default conformal array and obtain the element positions.

ha = phased.ConformalArray;
pos = getElementPosition(ha)

3-181

phased.ConformalArray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
conformal array object H.

Examples Construct a default conformal array and obtain the number of elements.

ha = phased.ConformalArray;
N = getNumElements(ha)

3-182

phased.ConformalArray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-183

phased.ConformalArray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-184

phased.ConformalArray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConformalArray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-185

phased.ConformalArray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the
range specified by a property of H.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-186

phased.ConformalArray.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

3-187

phased.ConformalArray.plotResponse

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Weights

Weights applied to the array, specified as a length-N column
vector or N-by-M matrix. N is the number of elements in the
array. M is the number of frequencies in FREQ. If Weights is a
vector, the function applies the same weights to each frequency. If
Weights is a matrix, the function applies each column of weight
values to the corresponding frequency in FREQ.

Examples Construct an 8-element uniform circular array (UCA) and plot its
azimuth responses. Assume the operating frequency is 1 GHz and the
wave propagation speed is 3e8 m/s.

N = 8; azang = (0:N-1)*360/N-180;
ha = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9; c = 3e8;
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

3-188

phased.ConformalArray.plotResponse

See Also uv2azel | azel2uv

3-189

phased.ConformalArray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-190

phased.ConformalArray.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

3-191

phased.ConformalArray.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Responses of array elements. RESP has dimensions N-by-M-by-L.
N is the number of elements in the phased array. Each column
of RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples Construct an 8-element uniform circular array (UCA). Assume the
operating frequency is 1 GHz. Find the response of each element in this
array in the direction of 30 degrees azimuth and 5 degrees elevation.

ha = phased.ConformalArray;
N = 8; azang = (0:N-1)*360/N-180;
ha.ElementPosition = [cosd(azang);sind(azang);zeros(1,N)];
ha.ElementNormal = [azang;zeros(1,N)];
fc = 1e9; ang = [30;5];
resp = step(ha,fc,ang);

See Also uv2azel | phitheta2azel

3-192

phased.ConformalArray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

3-193

phased.ConformalArray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

Title

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Positions and Normal Directions in Uniform Circular Array

Display the element positions and normal directions of all elements of
an 8-element uniform circular array.

Create a vector of eight uniformly spaced azimuth angles.

N = 8;
azang = (0:N-1) * 360/N - 180;

Create an 8-element uniform circular array.

ha = phased.ConformalArray(...
'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

Display the element positions and normal directions of all elements
in the array.

viewArray(ha,'ShowNormals',true)

3-194

phased.ConformalArray.viewArray

See Also phased.ArrayResponse |

Related
Examples

• Phased Array Gallery

3-195

../examples/phased-array-gallery.html

phased.ConstantGammaClutter

Purpose Constant gamma clutter simulation

Description The ConstantGammaClutter object simulates clutter.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on
page 3-196.

2 Call step to simulate the clutter return for your system according to
the properties of phased.ConstantGammaClutter. The behavior of
step is specific to each object in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

Construction H = phased.ConstantGammaClutter creates a constant gamma clutter
simulation System object, H. This object simulates the clutter return of
a monostatic radar system using the constant gamma model.

H = phased.ConstantGammaClutter(Name,Value) creates a constant
gamma clutter simulation object, H, with additional options specified
by one or more Name,Value pair arguments. Name is a property name,

3-196

phased.ConstantGammaClutter

and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1, ,NameN,ValueN.

Properties Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array
object whose Element property value is an antenna element
object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

3-197

phased.ConstantGammaClutter

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar
or a row vector. The default value of this property corresponds to
10 kHz. When PRF is a vector, it represents a staggered PRF. In
this case, the output pulses use elements in the vector as their
PRFs, one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the value used in the constant clutter model, as a
scalar in decibels. The value depends on both terrain type and
the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of |
'Flat' | 'Curved' |. When you set this property to 'Flat', the
earth is assumed to be a flat plane. When you set this property to
'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward
from the surface as a nonnegative scalar.

Default: 300

3-198

phased.ConstantGammaClutter

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in
meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector
in the form [AzimuthAngle; ElevationAngle] in degrees. The
default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local
coordinate system of the radar antenna or antenna array.
Azimuth angle must be between –180 and 180 degrees. Elevation
angle must be between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the
radar antenna array. This value is a scalar. The broadside is
defined as zero degrees azimuth and zero degrees elevation. The
depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

3-199

phased.ConstantGammaClutter

Specify the maximum range in meters for the clutter simulation
as a positive scalar. The maximum range must be greater than
the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The
clutter simulation covers a region having the specified azimuth
span, symmetric to 0 degrees azimuth. Typically, all clutter
patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend
beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a
positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit
signal in the step syntax. Set this property to false omit the
transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also
specify the TransmitERP property.

Default: false

3-200

phased.ConstantGammaClutter

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the
radar system in watts as a positive scalar. This property applies
only when you set the TransmitSignalInputPort property to
false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation
as a positive scalar. After the coherence time elapses, the step
method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random
numbers are never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses'
| 'Samples' |. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the
'Samples' option more convenient because the step output
always has the same matrix size.

3-201

phased.ConstantGammaClutter

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. Typically, you use the number of samples
in one pulse. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

3-202

phased.ConstantGammaClutter

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create constant gamma clutter
simulation object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

3-203

phased.ConstantGammaClutter

release Allow property value and input
characteristics changes

reset Reset random numbers and time
count for clutter simulation

step Simulate clutter using constant
gamma model

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...

3-204

phased.ConstantGammaClutter

'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-205

phased.ConstantGammaClutter

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an
input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the

3-206

phased.ConstantGammaClutter

operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit
signal as an input argument to step. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;

3-207

phased.ConstantGammaClutter

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-208

phased.ConstantGammaClutter

Extended
Capabilities

Parallel Computing

You can use this System object to perform Monte Carlo simulations
with Parallel Computing Toolbox constructs, such as parfor. In this
situation, set the SeedSource property to 'Auto' to ensure correct,
automatic handling of random number streams on the workers.

Do not use this System object in a parallel construct whose iterations
represent data from consecutive pulses. Because such iterations are
not independent of each other, they must run sequentially. For more

3-209

phased.ConstantGammaClutter

information about parallel computing constructs, see “Deciding When to
Use parfor” or “Programming Considerations”.

To perform computations on a GPU instead of a CPU,
use phased.gpu.ConstantGammaClutter instead of
phased.ConstantGammaClutter.

References [1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.BarrageJammer | phased.gpu.ConstantGammaClutter |
surfacegamma | uv2azel | phitheta2azel

Related
Examples

• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar
• “Example: DPCA Pulse Canceller for Clutter Rejection”

Concepts • “Clutter Modeling”

3-210

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.ConstantGammaClutter.clone

Purpose Create constant gamma clutter simulation object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-211

phased.ConstantGammaClutter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-212

phased.ConstantGammaClutter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-213

phased.ConstantGammaClutter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConstantGammaClutter System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-214

phased.ConstantGammaClutter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-215

phased.ConstantGammaClutter.reset

Purpose Reset random numbers and time count for clutter simulation

Syntax reset(H)

Description reset(H) resets the states of the ConstantGammaClutter object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'. This method resets the elapsed coherence
time. Also, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

3-216

phased.ConstantGammaClutter.step

Purpose Simulate clutter using constant gamma model

Syntax Y = step(H)
Y = step(H,X)
Y = step(H,STEERANGLE)
Y = step(H,X,STEERANGLE)

Description Y = step(H) computes the collected clutter return at each sensor. This
syntax is available when you set the TransmitSignalInputPort
property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal
refers to the output of the transmitter while it is on during a given pulse.
This syntax is available when you set the TransmitSignalInputPort
property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor
is an array that contains subarrays and H.Sensor.SubarraySteering
is either 'Phase' or 'Time'.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax
is available when you configure H so that H.TransmitSignalInputPort
is true, H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Input
Arguments

H

Constant gamma clutter object.

X

Transmit signal, specified as a column vector.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180

3-217

phased.ConstantGammaClutter.step

degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

Y

Collected clutter return at each sensor. Y has dimensions N-by-M
matrix. M is the number of subarrays in the radar system if
H.Sensor contains subarrays, or the number of sensors, otherwise.
When you set the OutputFormat property to 'Samples', N
is specified in the NumSamples property. When you set the
OutputFormat property to 'Pulses', N is the total number of
samples in the next L pulses. In this case, L is specified in the
NumPulses property.

Tips The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

3-218

phased.ConstantGammaClutter.step

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;

3-219

phased.ConstantGammaClutter.step

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-220

phased.ConstantGammaClutter.step

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an
input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the

3-221

phased.ConstantGammaClutter.step

operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit
signal as an input argument to step. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov,'SeedSource','Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;

3-222

phased.ConstantGammaClutter.step

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-223

phased.ConstantGammaClutter.step

Related
Examples

• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar
• “Example: DPCA Pulse Canceller for Clutter Rejection”

Concepts • “Clutter Modeling”

3-224

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.CosineAntennaElement

Purpose Cosine antenna

Description The CosineAntennaElement object models an antenna with a cosine
response in both azimuth and elevation.

To compute the response of the antenna element for specified directions:

1 Define and set up your cosine antenna element. See “Construction”
on page 3-225.

2 Call step to compute the antenna response according to the
properties of phased.CosineAntennaElement. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.CosineAntennaElement creates a cosine antenna system
object, H, that models an antenna element whose response is cosine
raised to a specified power greater than or equal to one in both the
azimuth and elevation directions.

H = phased.CosineAntennaElement(Name,Value) creates a cosine
antenna object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Operating frequency range

Specify the operating frequency range (in hertz) of the antenna
element as a 1-by-2 row vector in the form of [LowerBound
HigherBound]. The antenna element has no response outside
the specified frequency range. The default value represents the
UHF band.

Default: [3e8 1e9]

CosinePower

Exponent of cosine pattern

3-225

phased.CosineAntennaElement

Specify the exponent of cosine pattern as a scalar or a 1-by-2
vector. All specified values must be real numbers greater than
or equal to 1. When you set CosinePower to a scalar, both the
azimuth direction cosine pattern and the elevation direction
cosine pattern are raised to the specified value. When you set
CosinePower to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is
the exponent for the elevation direction cosine pattern.

Default: [1.5 1.5]

Methods clone Create cosine antenna object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Definitions Cosine Response

The cosine response, or cosine pattern, is given by:

P az el az elm n(,) cos ()cos ()

In this expression:

3-226

phased.CosineAntennaElement

• az is the azimuth angle.

• el is the elevation angle.

• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90
and 90 degrees, inclusive. There is no response at the back of a cosine
antenna. The cosine response pattern achieves a maximum value of
1 at 0 degrees azimuth and elevation. Raising the response pattern
to powers greater than one concentrates the response in azimuth or
elevation.

Examples Construct a cosine pattern antenna and calculate its response at the
boresight. Assume the antenna can work between 800 MHz and 1.2
GHz and the operating frequency is 1 GHz.

ha = phased.CosineAntennaElement('FrequencyRange',...
[800e6 1.2e9]);

resp = step(ha,1e9,[0; 0]);
plotResponse(ha,1e9,'RespCut','El','Format','Polar');

3-227

phased.CosineAntennaElement

See Also phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ULA | phased.URA | phased.ConformalArray |

3-228

phased.CosineAntennaElement.clone

Purpose Create cosine antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-229

phased.CosineAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-230

phased.CosineAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-231

phased.CosineAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
CosineAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-232

phased.CosineAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element object.

FREQ

Operating frequency in hertz. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must

3-233

phased.CosineAntennaElement.plotResponse

be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

3-234

phased.CosineAntennaElement.plotResponse

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Construct a default cosine antenna. Assume the antenna operating
frequency is 1 GHz. Plot the antenna’s response as a polar plot in 3-D.

hcos = phased.CosineAntennaElement;
plotResponse(hcos,1e9,'Format','Polar','RespCut','3D');

3-235

phased.CosineAntennaElement.plotResponse

See Also uv2azel | azel2uv

3-236

phased.CosineAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-237

phased.CosineAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response
RESP at operating frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

3-238

phased.CosineAntennaElement.step

Output
Arguments

RESP

Voltage response of antenna element. RESP is an M-by-L matrix.
RESP contains the responses at the M angles specified in ANG and
the L frequencies specified in FREQ.

Definitions Cosine Response

The cosine response, or cosine pattern, is given by:

P az el az elm n(,) cos ()cos ()

In this expression:

• az is the azimuth angle.

• el is the elevation angle.

• The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between –90
and 90 degrees, inclusive. There is no response at the back of a cosine
antenna. The cosine response pattern achieves a maximum value of
1 at 0 degrees azimuth and elevation. Raising the response pattern
to powers greater than one concentrates the response in azimuth or
elevation.

Examples Construct a cosine antenna element. The cosine response is raised to a
power of 1.5. The antenna frequency range is the IEEE® X band from
8 to 12 GHz. The antenna operates at 10 GHz. Obtain the antenna’s
response for an incident angle of 30 degrees azimuth and 5 degrees
elevation.

hant = phased.CosineAntennaElement(...
'FrequencyRange',[8e9 12e9],...
'CosinePower',1.5);

% operating frequency
fc = 10e9;
% incident angle

3-239

phased.CosineAntennaElement.step

ang = [30;5];
% use the step method to obtain the antenna's response
resp = step(hant,fc,ang);

See Also uv2azel | phitheta2azel

3-240

phased.CustomAntennaElement

Purpose Custom antenna

Description The CustomAntennaElement object models an antenna element with a
custom response pattern.

To compute the response of the antenna element for specified directions:

1 Define and set up your custom antenna element. See “Construction”
on page 3-241.

2 Call step to compute the antenna response according to the
properties of phased.CustomAntennaElement. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.CustomAntennaElement creates a custom antenna system
object, H. The object models an antenna element with a custom response
pattern. The default custom antenna element has an isotropic response
in the space.

H = phased.CustomAntennaElement(Name,Value) creates a custom
antenna object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyVector

Operating frequency vector

Specify the operating frequencies of the antenna element in
hertz as a vector. The elements of the vector must be increasing.
The antenna element has no response outside the frequency
range specified by the minimum and maximum elements of the
frequency vector.

Default: [3e8 1e9]

AzimuthAngles

Azimuth angles

3-241

phased.CustomAntennaElement

Specify the azimuth angles (in degrees) as a vector of length P.
These values are the azimuth angles where the custom pattern is
evaluated. P must be greater than 2. The azimuth angles must lie
between –180 and 180 degrees.

Default: [-180:180]

ElevationAngles

Elevation angles

Specify the elevation angles (in degrees) as a vector of length Q.
These values are the elevation angles where the custom pattern is
evaluated. Q must be greater than 2. The elevation angles must
lie between –90 and 90 degrees.

Default: [-90:90]

FrequencyResponse

Frequency responses

Specify the frequency responses in decibels measured at the
frequencies defined in FrequencyVector property as a row vector.
The length of the vector must equal to the length of the frequency
vector specified in the FrequencyVector property.

Default: [0 0]

RadiationPattern

Antenna radiation pattern

Specify the 3-D custom magnitude pattern in decibels as a Q-by-P
matrix. Q is the number of elements in the ElevationAngles
property and P is the number of elements in the AzimuthAngles
property.

The custom antenna object uses interpolation to estimate
the response of the antenna at a given direction. To avoid

3-242

phased.CustomAntennaElement

interpolation errors, the custom response pattern should cover
azimuth angles in the range [–180, 180] degrees and elevation
angles in the range [–90, 90] degrees.

If a particular value in the response pattern matrix is NaN, the
processing considers the response to be zero at that point.

Default: A 181-by-361 matrix with all elements equal to 1

Methods clone Create custom antenna object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Examples Response of Custom Antenna

Create a user-defined antenna with cosine pattern, and calculate that
antenna’s response at the boresight.

Create the antenna and calculate the response. The user-defined
pattern is omnidirectional in the azimuth direction and has a cosine
pattern in the elevation direction. Assume the antenna works at 1 GHz.

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;

3-243

phased.CustomAntennaElement

ha.ElevationAngles = -90:90;
ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)',...

1,numel(ha.AzimuthAngles)));
resp = step(ha,1e9,[0; 0]);

Plot the response.

plotResponse(ha,1e9,'RespCut','El','Format','Polar');

Antenna Radiation Pattern in U/V Coordinates

Define a custom antenna in u/v space. Then, calculate and plot the
response.

3-244

phased.CustomAntennaElement

Define the radiation pattern of an antenna in terms of u and v
coordinates within the unit circle.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Create an antenna that has this radiation pattern.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);
ha = phased.CustomAntennaElement(...

'AzimuthAngles',az,'ElevationAngles',el,...
'RadiationPattern',pat_azel);

Calculate the response in the direction u = 0.5, v = 0. Assume the
antenna operates at 1 GHz.

dir_uv = [0.5; 0];
dir_azel = uv2azel(dir_uv);
fc = 1e9;
resp = step(ha,fc,dir_azel);

Plot the response in u/v space as a 3-D plot and a u cut.

plotResponse(ha,fc,'Format','UV','RespCut','3D');
figure;
plotResponse(ha,fc,'Format','UV');

3-245

phased.CustomAntennaElement

3-246

phased.CustomAntennaElement

Algorithms The total response of a custom antenna element is a
combination of its frequency response and spatial response.
phased.CustomAntennaElement calculates both responses using
nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also phased.ConformalArray | phased.CosineAntennaElement |
phased.IsotropicAntennaElement | phased.ULA | phased.URA |
uv2azelpat | phitheta2azelpat | uv2azel | phitheta2azel

3-247

phased.CustomAntennaElement.clone

Purpose Create custom antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-248

phased.CustomAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-249

phased.CustomAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-250

phased.CustomAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
CustomAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-251

phased.CustomAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element object.

FREQ

Operating frequency in hertz. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must

3-252

phased.CustomAntennaElement.plotResponse

be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

3-253

phased.CustomAntennaElement.plotResponse

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Response of Custom Antenna

Create a user-defined antenna with cosine pattern, and plot that
antenna’s response.

Create the antenna and calculate the response. The user-defined
pattern is omnidirectional in the azimuth direction and has a cosine
pattern in the elevation direction. Assume the antenna works at 1 GHz.

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;
ha.ElevationAngles = -90:90;
ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)',...

1,numel(ha.AzimuthAngles)));
resp = step(ha,1e9,[0; 0]);

Plot the response.

plotResponse(ha,1e9,'RespCut','El','Format','Polar');

3-254

phased.CustomAntennaElement.plotResponse

See Also uv2azel | azel2uv

3-255

phased.CustomAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-256

phased.CustomAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response
RESP at operating frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

3-257

phased.CustomAntennaElement.step

Output
Arguments

RESP

Voltage response of antenna element. RESP is an M-by-L matrix.
RESP contains the responses at the M angles specified in ANG and
the L frequencies specified in FREQ.

Examples Construct a user defined antenna with an omnidirectional response in
azimuth and a cosine pattern in elevation. The antenna operates at 1
GHz. Find the response of the antenna at the boresight.

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;
ha.ElevationAngles = -90:90;
ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)',...

1,numel(ha.AzimuthAngles)));
resp = step(ha,1e9,[0; 0]);

Algorithms The total response of a custom antenna element is a
combination of its frequency response and spatial response.
phased.CustomAntennaElement calculates both responses using
nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also uv2azel | phitheta2azel

3-258

phased.CustomMicrophoneElement

Purpose Custom microphone

Description The CustomMicrophoneElement object creates a custom microphone
element.

To compute the response of the microphone element for specified
directions:

1 Define and set up your custom microphone element. See
“Construction” on page 3-259.

2 Call step to compute the response according to the properties of
phased.CustomMicrophoneElement. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.CustomMicrophoneElement creates a custom microphone
system object, H, that models a custom microphone element.

H = phased.CustomMicrophoneElement(Name,Value) creates a
custom microphone object, H, with each specified property set to the
specified value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyVector

Operating frequency vector

Specify the frequencies in hertz where the frequency responses
of element are measured as a vector. The elements of the vector
must be increasing. The microphone element has no response
outside the specified frequency range.

Default: [20 20e3]

FrequencyResponse

Frequency responses

Specify the frequency responses in decibels measured at the
frequencies defined in the FrequencyVector property as a row

3-259

phased.CustomMicrophoneElement

vector. The length of the vector must equal the length of the
frequency vector specified in the FrequencyVector property.

Default: [0 0]

PolarPatternFrequencies

Polar pattern measuring frequencies

Specify the measuring frequencies in hertz of the polar patterns
as a row vector of length M. The measuring frequencies must be
within the frequency range specified in the FrequencyVector
property.

Default: 1e3

PolarPatternAngles

Polar pattern measuring angles

Specify the measuring angles in degrees of the polar patterns
as a row vector of length N. The angles are measured from the
central pickup axis of the microphone, and must be between –180
and 180, inclusive.

Default: [-180:180]

PolarPattern

Polar pattern

Specify the polar patterns of the microphone element as an
M-by-N matrix. M is the number of measuring frequencies
specified in the PolarPatternFrequencies property. N is the
number of measuring angles specified in the PolarPatternAngles
property. Each row of the matrix represents the magnitude of
the polar pattern (in decibels) measured at the corresponding
frequency specified in the PolarPatternFrequencies property
and corresponding angles specified in the PolarPatternAngles
property. The pattern is assumed to be measured in the azimuth

3-260

phased.CustomMicrophoneElement

plane where the elevation angle is 0 and where the central pickup
axis is assumed to be 0 degrees azimuth and 0 degrees elevation.
The polar pattern is assumed to be symmetric around the central
axis and therefore the microphone’s response pattern in 3-D space
can be constructed from the polar pattern.

Default: An omnidirectional pattern with 0 dB response
everywhere

Methods clone Create omnidirectional
microphone object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of
microphone

release Allow property value and input
characteristics changes

step Output response of microphone

Examples Create a custom Cardioid microphone, and calculate that microphone’s
response at response at 500, 1500, and 2000 Hz in the directions [0;0]
and [40;50].

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

3-261

phased.CustomMicrophoneElement

resp = step(h,[500 1500 2000],[0 0;40 50]');
plotResponse(h,500,'RespCut','Az','Format','Polar');

Algorithms The total response of a custom microphone element is a
combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using
nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value
is nonscalar, the object specifies multiple polar patterns. In this case,
the interpolation uses the polar pattern that is measured closest to the
specified frequency.

3-262

phased.CustomMicrophoneElement

See Also phased.OmnidirectionalMicrophoneElement | phased.ULA |
phased.URA | phased.ConformalArray | uv2azel | phitheta2azel

3-263

phased.CustomMicrophoneElement.clone

Purpose Create omnidirectional microphone object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-264

phased.CustomMicrophoneElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-265

phased.CustomMicrophoneElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-266

phased.CustomMicrophoneElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
CustomMicrophoneElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-267

phased.CustomMicrophoneElement.plotResponse

Purpose Plot response pattern of microphone

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element object.

FREQ

Operating frequency in hertz. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must

3-268

phased.CustomMicrophoneElement.plotResponse

be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

3-269

phased.CustomMicrophoneElement.plotResponse

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Azimuth Response of Cardioid Microphone

Plot the azimuth responses of a custom cardioid microphone at
operating frequencies of 500 Hz and 1 kHz.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

fc = 500;
plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Polar');

3-270

phased.CustomMicrophoneElement.plotResponse

Response of Cardioid Microphone in U/V Space

Plot the u cut of the response of a custom cardioid microphone in u/v
space.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

fc = 500;
plotResponse(h,fc,'Format','UV');

3-271

phased.CustomMicrophoneElement.plotResponse

See Also uv2azel | azel2uv

3-272

phased.CustomMicrophoneElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-273

phased.CustomMicrophoneElement.step

Purpose Output response of microphone

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the microphone’s magnitude
response, RESP, at frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

3-274

phased.CustomMicrophoneElement.step

Output
Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains
the responses of the microphone element at the M angles specified
in ANG and the L frequencies specified in FREQ.

Examples Construct a custom cardioid microphone with an operating frequency
of 500 Hz. Find the microphone response in the directions of [0;0] and
[40;50].

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

fc = 500; ang = [0 0;40 50]';
resp = step(h,fc,ang);

Algorithms The total response of a custom microphone element is a
combination of its frequency response and spatial response.
phased.CustomMicrophoneElement calculates both responses using
nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value
is nonscalar, the object specifies multiple polar patterns. In this case,
the interpolation uses the polar pattern that is measured closest to the
specified frequency.

See Also uv2azel | phitheta2azel

3-275

phased.DPCACanceller

Purpose Displaced phase center array (DPCA) pulse canceller

Description The DPCACanceller object implements a displaced phase center array
pulse canceller.

To compute the output signal of the space time pulse canceller:

1 Define and set up your DPCA pulse canceller. See “Construction”
on page 3-276.

2 Call step to execute the DPCA algorithm according to the properties
of phased.DPCACanceller. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.DPCACanceller creates a displaced phase center array
(DPCA) canceller System object, H. The object performs two-pulse DPCA
processing on the input data.

H = phased.DPCACanceller(Name,Value) creates a DPCA object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-276

phased.DPCACanceller

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies
the targeting direction.

Default: 'Property'

Direction

Receiving mainlobe direction

3-277

phased.DPCACanceller

Specify the receiving mainlobe direction of the receiving sensor
array as a column vector of length 2. The direction is specified in
the format of [AzimuthAngle;ElevationAngle] (in degrees). The
azimuth angle should be between –180 and 180. The elevation
angle should be between –90 and 90. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the
Doppler.

'Input port' An input argument in each invocation of step specifies
the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (hertz)

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

3-278

phased.DPCACanceller

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before
applying the Doppler filtering. Set this property to false to
output the processing result after the Doppler filtering.

Default: false

Methods clone Create DPCA object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DPCA processing on
input data

Examples Process the data cube using a DPCA processor. The weights are
calculated for the 71st cell of a collected data cube. The look direction
is [0; 0] degrees and the Doppler is 12980 Hz.

3-279

phased.DPCACanceller

load STAPExampleData; % load data
Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);
Hresp = phased.AngleDopplerResponse(...

'SensorArray',Hs.SensorArray,...
'OperatingFrequency',Hs.OperatingFrequency,...
'PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

3-280

phased.DPCACanceller

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.ADPCACanceller | phased.AngleDopplerResponse |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

3-281

phased.DPCACanceller.clone

Purpose Create DPCA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-282

phased.DPCACanceller.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-283

phased.DPCACanceller.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-284

phased.DPCACanceller.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the DPCACanceller
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-285

phased.DPCACanceller.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-286

phased.DPCACanceller.step

Purpose Perform DPCA processing on input data

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(___ ,DOP)
[Y,W] = step(___)

Description Y = step(H,X,CUTIDX) applies the DPCA pulse cancellation algorithm
to the input data X. The algorithm calculates the processing weights
according to the range cell specified by CUTIDX. This syntax is
available when the DirectionSource property is 'Property' and
the DopplerSource property is 'Property'. The receiving mainlobe
direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering,
depending on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe
direction. This syntax is available when the DirectionSource property
is 'Input port' and the DopplerSource property is 'Property'.

Y = step(___ ,DOP) uses DOP as the targeting Doppler frequency. This
syntax is available when the DopplerSource property is 'Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-287

phased.DPCACanceller.step

Input
Arguments

H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric
array whose dimensions are (range, channels, pulses).

CUTIDX

Range cell.

ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in
the form [AzimuthAngle; ElevationAngle], in degrees. The
azimuth angle must be between –180 and 180. The elevation
angle must be between –90 and 90.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output
Arguments

Y

Result of applying pulse cancelling to the input data. The
meaning and dimensions of Y depend on the PreDopplerOutput
property of H:

• If PreDopplerOutput is true, Y contains the pre-Doppler data.
Y is an M-by-(P–1) matrix. Each column in Y represents the
result obtained by cancelling the two successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying
an FFT-based Doppler filter to the pre-Doppler data. The
targeting Doppler is the Doppler property value. Y is a column
vector of length M.

3-288

phased.DPCACanceller.step

W

Processing weights the pulse canceller used to obtain the
pre-Doppler data. The dimensions of W depend on the
PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The
columns in W correspond to successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length
(N*P).

Examples Process the data cube using a DPCA processor. The weights are
calculated for the 71st cell of a collected data cube. The look direction
is [0; 0] degrees and the Doppler is 12980 Hz.

load STAPExampleData; % load data
Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

See Also uv2azel | phitheta2azel

3-289

phased.ElementDelay

Purpose Sensor array element delay estimator

Description The ElementDelay object calculates the signal delay for elements in
an array.

To compute the signal delay across the array elements:

1 Define and set up your element delay estimator. See “Construction”
on page 3-290.

2 Call step to estimate the delay according to the properties of
phased.ElementDelay. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.ElementDelay creates an element delay estimator System
object, H. The object calculates the signal delay for elements in an array
when the signal arrives the array from specified directions. By default,
a 2-element uniform linear array (ULA) is used.

H = phased.ElementDelay(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array used to calculate the delay

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-290

phased.ElementDelay

Default: Speed of light

Methods clone Create element delay object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate delay for elements

Examples Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input
is impinging on the array from 30 degrees azimuth and 20 degrees
elevation.

ha = phased.ULA('NumElements',4);
hed = phased.ElementDelay('SensorArray',ha);
tau = step(hed,[30;20])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ArrayResponse |
phased.SteeringVector |

3-291

phased.ElementDelay.clone

Purpose Create element delay object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-292

phased.ElementDelay.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-293

phased.ElementDelay.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-294

phased.ElementDelay.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ElementDelay
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-295

phased.ElementDelay.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-296

phased.ElementDelay.step

Purpose Calculate delay for elements

Syntax TAU = step(H,ANG)

Description TAU = step(H,ANG) returns the delay TAU of each element relative
to the array’s phase center for the signal incident directions specified
by ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Element delay object.

ANG

Signal incident directions in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

3-297

phased.ElementDelay.step

Output
Arguments

TAU

Delay in seconds.TAU is an N-by-M matrix, where N is the number
of elements in the array. Each column of TAU contains the delays
of the array elements for the corresponding direction specified
in ANG.

Examples Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input
is impinging on the array from 30 degrees azimuth and 20 degrees
elevation.

ha = phased.ULA('NumElements',4);
hed = phased.ElementDelay('SensorArray',ha);
tau = step(hed,[30;20])

See Also uv2azel | phitheta2azel

3-298

phased.ESPRITEstimator

Purpose ESPRIT direction of arrival (DOA) estimator

Description The ESPRITEstimator object computes a estimation of signal
parameters via rotational invariance (ESPRIT) direction of arrival
estimate.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
3-299.

2 Call step to estimate the DOA according to the properties of
phased.ESPRITEstimator. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ESPRITEstimator creates an ESPRIT DOA estimator
System object, H. The object estimates the signal’s direction-of-arrival
(DOA) using the ESPRIT algorithm with a uniform linear array (ULA).

H = phased.ESPRITEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-299

phased.ESPRITEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

3-300

phased.ESPRITEstimator

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. The 'AIC' uses the Akaike Information Criterion
and the 'MDL' uses Minimum Description Length criterion. This
property applies when you set the NumSignalsSource property
to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

Default: 1

Method

Type of least squares method

Specify the least squares method used for ESPRIT as one of 'TLS'
or 'LS'. 'TLS' refers to total least squares and 'LS'refers to
least squares.

Default: 'TLS'

RowWeighting

Row weighting factor

Specify the row weighting factor for signal subspace eigenvectors
as a positive integer scalar. This property controls the weights
applied to the selection matrices. In most cases the higher value

3-301

phased.ESPRITEstimator

the better. However, it can never be greater than (N-1)/2 where
N is the number of elements of the array.

Default: 1

VisibleRegion

Visible region

Specify the DOA search limits (in degrees) as a real
2-element row vector. The vector must be symmetric around
broadside (0 degrees). This property applies when you set the
NumSignalsSource property to 'Property'.

Default: [-90 90]

Methods clone Create ESPRIT DOA estimator
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

3-302

phased.ESPRITEstimator

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.ESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc);
doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2az

3-303

phased.ESPRITEstimator.clone

Purpose Create ESPRIT DOA estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-304

phased.ESPRITEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-305

phased.ESPRITEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-306

phased.ESPRITEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ESPRITEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-307

phased.ESPRITEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-308

phased.ESPRITEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator,
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.ESPRITEstimator('SensorArray',ha,...

'OperatingFrequency',fc);
doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

3-309

phased.FMCWWaveform

Purpose FMCW Waveform

Description The FMCWWaveform object creates an FMCW (frequency modulated
continuous wave) waveform.

To obtain waveform samples:

1 Define and set up your FMCW waveform. See “Construction” on
page 3-310.

2 Call step to generate the FMCW waveform samples according to the
properties of phased.FMCWWaveform. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.FMCWWaveform creates an FMCW waveform System object,
H. The object generates samples of an FMCW waveform.

H = phased.FMCWWaveform(Name,Value) creates an FMCW
waveform object, H, with additional options specified by one or more
Name,Value pair arguments. Name is a property name, and Value is
the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Properties SampleRate

Sample rate

Specify the same rate, in hertz, as a positive scalar. The default
value of this property corresponds to 1 MHz.

The quantity (SampleRate .* SweepTime) is a scalar or vector
that must contain only integers.

Default: 1e6

SweepTime

Duration of each linear FM sweep

3-310

phased.FMCWWaveform

Specify the duration of the upsweep or downsweep, in seconds,
as a row vector of positive, real numbers. The default value
corresponds to 100 μs.

If SweepDirection is 'Triangle', the sweep time is half the
sweep period because each period consists of an upsweep and a
downsweep. If SweepDirection is 'Up' or 'Down', the sweep time
equals the sweep period.

The quantity (SampleRate .* SweepTime) is a scalar or vector
that must contain only integers.

To implement a varying sweep time, specify SweepTime as a
nonscalar row vector. The waveform uses successive entries of the
vector as the sweep time for successive periods of the waveform.
If the last element of the vector is reached, the process continues
cyclically with the first entry of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must
have the same length.

Default: 1e-4

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping, in hertz,
as a row vector of positive, real numbers. The default value
corresponds to 100 kHz.

To implement a varying bandwidth, specify SweepBandwidth as
a nonscalar row vector. The waveform uses successive entries
of the vector as the sweep bandwidth for successive periods of
the waveform. If the last element of the SweepBandwidth vector
is reached, the process continues cyclically with the first entry
of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must
have the same length.

3-311

phased.FMCWWaveform

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' |
'Down' | 'Triangle'.

Default: 'Up'

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps
in the interval between 0 and B, where B is the SweepBandwidth
property value. If you set this property value to 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Sweeps'
or 'Samples'. When you set the OutputFormat property to
'Sweeps', the output of the step method is in the form of
multiple sweeps. In this case, the number of sweeps is the value
of the NumSweeps property. If the SweepDirection property is
'Triangle', each sweep is half a period.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Sweeps'

3-312

phased.FMCWWaveform

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumSweeps

Number of sweeps in output

Specify the number of sweeps in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Sweeps'.

Default: 1

Methods clone Create FMCW waveform object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot FMCW waveform

release Allow property value and input
characteristics changes

reset Reset states of FMCW waveform
object

step Samples of FMCW waveform

3-313

phased.FMCWWaveform

Definitions Triangle Sweep

In each period of a triangle sweep, the waveform sweeps up with a slope
of B/T and then down with a slope of –B/T. B is the sweep bandwidth,
and T is the sweep time. The sweep period is 2T.

Frequency

B

TimeT T

Upsweep

In each period of an upsweep, the waveform sweeps with a slope of B/T.
B is the sweep bandwidth, and T is the sweep time.

Frequency

B

TimeT

Downsweep

In each period of a downsweep, the waveform sweeps with a slope of
–B/T. B is the sweep bandwidth, and T is the sweep time.

Frequency

B

TimeT

3-314

phased.FMCWWaveform

Examples FMCW Waveform Plot

Create and plot an upsweep FMCW waveform.

hw = phased.FMCWWaveform('SweepBandwidth',1e5,...
'OutputFormat','Sweeps','NumSweeps',2);

plot(hw);

3-315

phased.FMCWWaveform

Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCWWaveform. Then, examine
the sweep using a spectrogram.

hw = phased.FMCWWaveform('SweepBandwidth',1e7,...
'SampleRate',2e7,'SweepDirection','Triangle',...
'NumSweeps',2);

x = step(hw);
spectrogram(x,32,16,32,hw.SampleRate,'yaxis');

3-316

phased.FMCWWaveform

References [1] Issakov, Vadim. Microwave Circuits for 24 GHz Automotive Radar
in Silicon-based Technologies. Berlin: Springer, 2010.

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also range2time | time2range | range2bwphased.LinearFMWaveform |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

3-317

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

phased.FMCWWaveform.clone

Purpose Create FMCW waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-318

phased.FMCWWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-319

phased.FMCWWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-320

phased.FMCWWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the FMCWWaveform
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-321

phased.FMCWWaveform.plot

Purpose Plot FMCW waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify
a Type value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PlotType

3-322

phased.FMCWWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

SweepIdx

Index of the sweep to plot. This value must be a positive integer
scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples FMCW Waveform Plot

Create and plot an upsweep FMCW waveform.

hw = phased.FMCWWaveform('SweepBandwidth',1e5,...
'OutputFormat','Sweeps','NumSweeps',2);

plot(hw);

3-323

phased.FMCWWaveform.plot

3-324

phased.FMCWWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-325

phased.FMCWWaveform.reset

Purpose Reset states of FMCW waveform object

Syntax reset(H)

Description reset(H) resets the states of the FMCWWaveform object, H. Afterward,
the next call to step restarts the sweep of the waveform.

3-326

phased.FMCWWaveform.step

Purpose Samples of FMCW waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the FMCW waveform in a column
vector, Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

FMCW waveform object.

Output
Arguments

Y

Column vector containing the waveform samples.

If H.OutputFormat is 'Samples', Y consists of H.NumSamples
samples.

If H.OutputFormat is 'Sweeps', Y consists of H.NumSweeps
sweeps. Also, if H.SweepDirection is 'Triangle', each sweep is
half a period.

Examples Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCWWaveform. Then, examine
the sweep using a spectrogram.

hw = phased.FMCWWaveform('SweepBandwidth',1e7,...
'SampleRate',2e7,'SweepDirection','Triangle',...

3-327

phased.FMCWWaveform.step

'NumSweeps',2);
x = step(hw);
spectrogram(x,32,16,32,hw.SampleRate,'yaxis');

3-328

phased.FreeSpace

Purpose Free space environment

Description The FreeSpace object models a free space environment.

To compute the propagated signal in free space:

1 Define and set up your free space environment. See “Construction”
on page 3-329.

2 Call step to propagate the signal through a free space environment
according to the properties of phased.FreeSpace. The behavior of
step is specific to each object in the toolbox.

Construction H = phased.FreeSpace creates a free space environment System
object, H. The object simulates narrowband signal propagation in free
space, by applying range-dependent time delay, gain and phase shift
to the input signal.

H = phased.FreeSpace(Name,Value) creates a free space environment
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties PropagationSpeed

Signal propagation speed

Specify the wave propagation speed (in meters per second) in free
space as a scalar.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

A scalar containing the carrier frequency in hertz of the
narrowband signal. The default value of this property corresponds
to 300 MHz.

3-329

phased.FreeSpace

Default: 3e8

TwoWayPropagation

Perform two-way propagation

Set this property to true to perform round-trip propagation
between the origin and destination that you specify in the
step command. Set this property to false to perform one-way
propagation from the origin to the destination.

Default: false

SampleRate

Sample rate

A scalar containing the sample rate (in hertz). The algorithm uses
this value to determine the propagation delay in samples. The
default value of this property corresponds to 1 MHz.

Default: 1e6

Methods clone Create free space object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

3-330

phased.FreeSpace

reset Reset internal states of
propagation channel

step Propagate signal from one
location to another

Examples Signal Propagation from Stationary Radar to Stationary
Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume both
the radar and the target are stationary.

henv = phased.FreeSpace('SampleRate',8e3);
y = step(henv,ones(10,1),[1000; 0; 0],[300; 200; 50],...

[0;0;0],[0;0;0]);

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume the
radar moves at 10 m/s in the direction of the x-axis, while the target
moves at 15 m/s in the direction of the y-axis.

henv = phased.FreeSpace('SampleRate',8e3);
origin_pos = [1000; 0; 0];
dest_pos = [300; 200; 50];
origin_vel = [10; 0; 0];
dest_vel = [0; 15; 0];
y = step(henv,ones(10,1),origin_pos,dest_pos,...

origin_vel,dest_vel);

Algorithms When the origin and destination are stationary relative to each other,
the output Y of step can be written as Y(t)=x(t–tau)/L. In this case, tau
is the delay and L is the propagation loss. The delay tau is R/c, where
R is the propagation distance and c is the propagation speed. The free
space path loss is given by

3-331

phased.FreeSpace

L
R

()4 2

2

where λ is the signal wavelength.

When there is relative motion between the origin and destination, the
processing also introduces a frequency shift. This shift corresponds to
the Doppler shift between the origin and destination. The frequency
shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
In this case, v is the relative speed from the origin to the destination.

For further details, see [2].

References [1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also fsplphased.RadarTarget |

3-332

phased.FreeSpace.clone

Purpose Create free space object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-333

phased.FreeSpace.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-334

phased.FreeSpace.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-335

phased.FreeSpace.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the FreeSpace
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-336

phased.FreeSpace.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-337

phased.FreeSpace.reset

Purpose Reset internal states of propagation channel

Syntax reset(H)

Description reset(H) resets the states of the FreeSpace object, H.

3-338

phased.FreeSpace.step

Purpose Propagate signal from one location to another

Syntax Y = step(H,X,origin_pos,dest_pos,origin_vel,dest_vel)

Description Y = step(H,X,origin_pos,dest_pos,origin_vel,dest_vel) returns
the resulting signal, Y, when the narrowband signal X propagates in free
space from origin_pos to dest_pos. The velocity of the signal origin
is origin_vel and the velocity of the signal destination is dest_vel.
Consider FreeSpace as a point-to-point propagation channel. For
example, you can use it to model the propagation of a signal between a
radar and a target.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Free space object.

X

Narrowband signal, specified as a column vector.

origin_pos

Starting location of signal, specified as a 3-by-1 column vector in
the form [x; y; z] (in meters).

dest_pos

Ending location of signal, specified as a 3-by-1 column vector in
the form [x; y; z] (in meters).

3-339

phased.FreeSpace.step

origin_vel

Velocity of signal origin, specified as a 3-by-1 column vector in the
form [Vx; Vy; Vz] (in meters/second).

dest_vel

Velocity of the signal destination, specified as a 3-by-1 column
vector in the form [Vx; Vy; Vz] (in meters/second).

Output
Arguments

Y

Propagated signal, returned as a column vector. Y is the signal
arriving at the propagation destination within the current
time frame, which is the time occupied by the current input. If
it takes longer than the current time frame for the signal to
propagate from the origin to the destination, the output contains
no contribution from the input of the current time frame.

Examples Signal Propagation from Stationary Radar to Stationary
Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume both
the radar and the target are stationary.

henv = phased.FreeSpace('SampleRate',8e3);
y = step(henv,ones(10,1),[1000; 0; 0],[300; 200; 50],...

[0;0;0],[0;0;0]);

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in a free space environment
from a radar at (1000, 0, 0) to a target at (300, 200, 50). Assume the
radar moves at 10 m/s in the direction of the x-axis, while the target
moves at 15 m/s in the direction of the y-axis.

henv = phased.FreeSpace('SampleRate',8e3);
origin_pos = [1000; 0; 0];
dest_pos = [300; 200; 50];

3-340

phased.FreeSpace.step

origin_vel = [10; 0; 0];
dest_vel = [0; 15; 0];
y = step(henv,ones(10,1),origin_pos,dest_pos,...

origin_vel,dest_vel);

Algorithms When the origin and destination are stationary relative to each other,
the output Y of step can be written as Y(t)=x(t–tau)/L. In this case, tau
is the delay and L is the propagation loss. The delay tau is R/c, where
R is the propagation distance and c is the propagation speed. The free
space path loss is given by

L
R

()4 2

2

where λ is the signal wavelength.

When there is relative motion between the origin and destination, the
processing also introduces a frequency shift. This shift corresponds to
the Doppler shift between the origin and destination. The frequency
shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
In this case, v is the relative speed from the origin to the destination.

For further details, see [2].

References [1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

3-341

phased.FrostBeamformer

Purpose Frost beamformer

Description The FrostBeamformer object implements a Frost beamformer.

To compute the beamformed signal:

1 Define and set up your Frost beamformer. See “Construction” on
page 3-342.

2 Call step to perform the beamforming operation according to the
properties of phased.FrostBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.FrostBeamformer creates a Frost beamformer System
object, H. The object performs Frost beamforming on the received signal.

H = phased.FrostBeamformer(Name,Value) creates a Frost
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-342

phased.FrostBeamformer

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

FilterLength

FIR filter length

Specify the length of FIR filter behind each sensor element in
the array as a positive integer.

Default: 2

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

3-343

phased.FrostBeamformer

Source of beamforming direction

Specify whether the beamforming direction comes from the
Direction property of this object or from an input argument in
step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle should be between –180 and 180. The elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0;0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

3-344

phased.FrostBeamformer

Methods clone Create Frost beamformer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform Frost beamforming

Examples Apply a Frost beamformer to an 11-element array. The incident angle
of the signal is –50 degrees in azimuth and 30 degrees in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',false);

incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.FrostBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'Direction',incidentAngle,'FilterLength',5);

3-345

phased.FrostBeamformer

y = step(hbf,rx);

% Plot
plot(t,rx(:,6),'r:',t,y);
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

Algorithms phased.FrostBeamformer uses a beamforming algorithm proposed
by Frost. It can be considered the time-domain counterpart of the

3-346

phased.FrostBeamformer

minimum variance distortionless response (MVDR) beamformer. The
algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
distortionless response constraint. The filter is specific to each sensor.

For further details, see [1].

References [1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array
Processing”, Proceedings of the IEEE. Vol. 60, Number 8, August, 1972,
pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayBeamformer | phased.TimeDelayLCMVBeamformer
| uv2azel | phitheta2azel

3-347

phased.FrostBeamformer.clone

Purpose Create Frost beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-348

phased.FrostBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-349

phased.FrostBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-350

phased.FrostBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
FrostBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-351

phased.FrostBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-352

phased.FrostBeamformer.step

Purpose Perform Frost beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
Y = step(H,X,XT,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs Frost beamforming on the input, X, and
returns the beamformed output in Y.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights. This syntax is available when you set the
TrainingInputPort property to true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is
available when you set the TrainingInputPort property to true and
set the DirectionSource property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Beamformer object.

3-353

phased.FrostBeamformer.step

X

Input signal, specified as an M-by-N matrix. M must be larger
than the FIR filter length specified in the FilterLength property.
N is the number of elements in the sensor array.

XT

Training samples, specified as an M-by-N matrix. M and N are
the same as the dimensions of X.

ANG

Beamforming directions, specified as a length-2 column vector.
The vector has the form [AzimuthAngle; ElevationAngle], in
degrees. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

Output
Arguments

Y

Beamformed output. Y is a column vector of length M, where M is
the number of rows in X.

W

Beamforming weights. W is a column vector of
length L, where L is the degrees of freedom of the
beamformer. For a Frost beamformer, H, L is given by
getNumElements(H.SensorArray)*H.FilterLength.

Examples Apply a Frost beamformer to an 11-element array. The incident angle
of the signal is –50 degrees in azimuth and 30 degrees in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

3-354

phased.FrostBeamformer.step

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',false);

incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.FrostBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'Direction',incidentAngle,'FilterLength',5);

y = step(hbf,rx);

Algorithms phased.FrostBeamformer uses a beamforming algorithm proposed
by Frost. It can be considered the time-domain counterpart of the
minimum variance distortionless response (MVDR) beamformer. The
algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
distortionless response constraint. The filter is specific to each sensor.

For further details, see [1].

References [1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array
Processing”, Proceedings of the IEEE. Vol. 60, Number 8, August, 1972,
pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

3-355

phased.gpu.ConstantGammaClutter

Purpose Constant gamma clutter simulation on GPU

Description The phased.gpu.ConstantGammaClutter object simulates clutter,
performing the computations on a GPU.

Note To use this object, you must install a Parallel Computing
Toolbox license and have access to an appropriate GPU. For more
about GPUs, see “GPU Computing” in the Parallel Computing Toolbox
documentation.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on
page 3-357.

2 Call step to simulate the clutter return for your system according to
the properties of phased.gpu.ConstantGammaClutter. The behavior
of step is specific to each object in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

3-356

phased.gpu.ConstantGammaClutter

• The radar system maintains a constant speed during simulation.

Construction H = phased.gpu.ConstantGammaClutter creates a constant gamma
clutter simulation System object, H. This object simulates the clutter
return of a monostatic radar system using the constant gamma model.

H = phased.gpu.ConstantGammaClutter(Name,Value) creates a
constant gamma clutter simulation object, H, with additional options
specified by one or more Name,Value pair arguments. Name is a
property name, and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Properties Sensor

Handle of sensor

Specify the sensor as an isotropic antenna object or as an array
object whose Element property value is an isotropic antenna
element object. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

3-357

phased.gpu.ConstantGammaClutter

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar
or a row vector. The default value of this property corresponds to
10 kHz. When PRF is a vector, it represents a staggered PRF. In
this case, the output pulses use elements in the vector as their
PRFs, one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the value used in the constant clutter model, as a
scalar in decibels. The value depends on both terrain type and
the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of |
'Flat' | 'Curved' |. When you set this property to 'Flat', the
earth is assumed to be a flat plane. When you set this property to
'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

3-358

phased.gpu.ConstantGammaClutter

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward
from the surface as a nonnegative scalar.

Default: 300

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in
meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector
in the form [AzimuthAngle; ElevationAngle] in degrees. The
default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local
coordinate system of the radar antenna or antenna array.
Azimuth angle must be between –180 and 180 degrees. Elevation
angle must be between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the
radar antenna array. This value is a scalar. The broadside is

3-359

phased.gpu.ConstantGammaClutter

defined as zero degrees azimuth and zero degrees elevation. The
depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation
as a positive scalar. The maximum range must be greater than
the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The
clutter simulation covers a region having the specified azimuth
span, symmetric to 0 degrees azimuth. Typically, all clutter
patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend
beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a
positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

3-360

phased.gpu.ConstantGammaClutter

Set this property to true to add input to specify the transmit
signal in the step syntax. Set this property to false omit the
transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also
specify the TransmitERP property.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the
radar system in watts as a positive scalar. This property applies
only when you set the TransmitSignalInputPort property to
false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation
as a positive scalar. After the coherence time elapses, the step
method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random
numbers are never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses'
| 'Samples' |. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

3-361

phased.gpu.ConstantGammaClutter

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the
'Samples' option more convenient because the step output
always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. Typically, you use the number of samples
in one pulse. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

3-362

phased.gpu.ConstantGammaClutter

'Auto' Random numbers come from the global GPU random
number stream.

'Auto' is appropriate in a variety of situations. In
particular, if you want to use a generator algorithm other
than mrg32k3a, set SeedSource to 'Auto'. Then, configure
the global GPU random number stream to use the generator
of your choice. You can configure the global GPU random
number stream using parallel.gpu.RandStream and
parallel.gpu.RandStream.setGlobalStream.

'Property' Random numbers come from a private stream of random
numbers. The stream uses the mrg32k3a generator
algorithm, with a seed specified in the Seed property of this
object.

If you do not want clutter computations to affect the
global GPU random number stream, set SeedSource to
'Property'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create GPU constant gamma
clutter simulation object with
same property values

getNumInputs Number of expected inputs to
step method

3-363

phased.gpu.ConstantGammaClutter

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset random numbers and time
count for clutter simulation

step Simulate clutter using constant
gamma model

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object. The configuration assumes
the earth is flat. The maximum clutter range of interest is 5 km, and
the maximum azimuth coverage is +/– 60 degrees.

3-364

phased.gpu.ConstantGammaClutter

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-365

phased.gpu.ConstantGammaClutter

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an

3-366

phased.gpu.ConstantGammaClutter

input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object and configure it to take a
transmit signal as an input argument to step. The configuration
assumes the earth is flat. The maximum clutter range of interest is 5
km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

3-367

phased.gpu.ConstantGammaClutter

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-368

phased.gpu.ConstantGammaClutter

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Random Number Comparison Between GPU and CPU

In most cases, it does not matter that the GPU and CPU use different
random numbers. Sometimes, you may need to reproduce the same
stream on both GPU and CPU. In such cases, you can set up the two

3-369

phased.gpu.ConstantGammaClutter

global streams so they produce identical random numbers. Both GPU
and CPU support the combined multiple recursive generator (mrg32k3a)
with the NormalTransform parameter set to 'Inversion'.

Define a seed value to use for the GPU stream and the CPU stream.

seed = 7151;

Create a CPU random number stream that uses the combined multiple
recursive generator and the chosen seed value. Then, use this stream
as the global stream for random number generation on the CPU.

stream_cpu = RandStream('CombRecursive','Seed',seed,...
'NormalTransform','Inversion');

RandStream.setGlobalStream(stream_cpu);

Create a GPU random number stream that uses the combined multiple
recursive generator and the same seed value. Then, use this stream as
the global stream for random number generation on the GPU.

stream_gpu = parallel.gpu.RandStream('CombRecursive','Seed',seed);
parallel.gpu.RandStream.setGlobalStream(stream_gpu);

Generate clutter on both the CPU and the GPU, using the global stream
on each platform.

h_cpu = phased.ConstantGammaClutter('SeedSource','Auto');
h_gpu = phased.gpu.ConstantGammaClutter('SeedSource','Auto');

y_cpu = step(h_cpu);
y_gpu = step(h_gpu);

Check that the elementwise differences between the CPU and GPU
results are negligible.

maxdiff = max(max(abs(y_cpu - y_gpu)))
eps

maxdiff =

3-370

phased.gpu.ConstantGammaClutter

2.9092e-18

ans =

2.2204e-16

References [1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also phased.BarrageJammer | phased.ConstantGammaClutter |
surfacegamma | uv2azel | phitheta2azel

Related
Examples

• GPU Acceleration of Clutter Simulation
• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar

Concepts • “Clutter Modeling”
• “GPU Computing”

3-371

../examples/gpu-acceleration-of-clutter-simulation.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.gpu.ConstantGammaClutter.clone

Purpose Create GPU constant gamma clutter simulation object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-372

phased.gpu.ConstantGammaClutter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-373

phased.gpu.ConstantGammaClutter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-374

phased.gpu.ConstantGammaClutter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ConstantGammaClutter System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-375

phased.gpu.ConstantGammaClutter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-376

phased.gpu.ConstantGammaClutter.reset

Purpose Reset random numbers and time count for clutter simulation

Syntax reset(H)

Description reset(H) resets the states of the ConstantGammaClutter object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'. This method resets the elapsed coherence
time. Also, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

3-377

phased.gpu.ConstantGammaClutter.step

Purpose Simulate clutter using constant gamma model

Syntax Y = step(H)
Y = step(H,X)

Description Y = step(H) computes the collected clutter return at each sensor. This
syntax is available when you set the TransmitSignalInputPort
property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal
refers to the output of the transmitter while it is on during a given pulse.
This syntax is available when you set the TransmitSignalInputPort
property to true.

Input
Arguments

H

Constant gamma clutter object.

X

Transmit signal, specified as a column vector of data type double.
The System object handles data transfer between the CPU and
GPU.

Output
Arguments

Y

Collected clutter return at each sensor. The data types of X and
Y are the same. Y has dimensions N-by-M matrix. M is the
number of subarrays in the radar system if H.Sensor contains
subarrays, or the number of sensors, otherwise. When you set
the OutputFormat property to 'Samples', N is specified in the
NumSamples property. When you set the OutputFormat property
to 'Pulses', N is the total number of samples in the next L
pulses. In this case, L is specified in the NumPulses property.

Tips The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

• The radar system is monostatic.

3-378

phased.gpu.ConstantGammaClutter.step

• The propagation is in free space.

• The terrain is homogeneous.

• The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

• The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

• The radar system maintains a constant height during simulation.

• The radar system maintains a constant speed during simulation.

Examples Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object. The configuration assumes
the earth is flat. The maximum clutter range of interest is 5 km, and
the maximum azimuth coverage is +/– 60 degrees.

3-379

phased.gpu.ConstantGammaClutter.step

Rmax = 5000; Azcov = 120;
tergamma = 0; tpower = 5000;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitERP',tpower,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-380

phased.gpu.ConstantGammaClutter.step

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an

3-381

phased.gpu.ConstantGammaClutter.step

input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the GPU clutter simulation object and configure it to take a
transmit signal as an input argument to step. The configuration
assumes the earth is flat. The maximum clutter range of interest is 5
km, and the maximum azimuth coverage is +/– 60 degrees.

Rmax = 5000; Azcov = 120;
tergamma = 0;
hclutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...

'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
'TransmitSignalInputPort',true,'PlatformHeight',height,...
'PlatformSpeed',speed,'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
'AzimuthCoverage',Azcov);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 µs.

3-382

phased.gpu.ConstantGammaClutter.step

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'NormalizeDoppler',true);

3-383

phased.gpu.ConstantGammaClutter.step

The results do not exactly match those achieved
by using phased.ConstantGammaClutter instead of
phased.gpu.ConstantGammaClutter. This discrepancy
occurs because of differences between CPU and GPU computations.

Related
Examples

• GPU Acceleration of Clutter Simulation
• Ground Clutter Mitigation with Moving Target Indication (MTI)
Radar

3-384

../examples/gpu-acceleration-of-clutter-simulation.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.gpu.ConstantGammaClutter.step

Concepts • “Clutter Modeling”
• “GPU Computing”

3-385

phased.IsotropicAntennaElement

Purpose Isotropic antenna

Description The IsotropicAntennaElement object creates an antenna element with
an isotropic response pattern.

To compute the response of the antenna element for specified directions:

1 Define and set up your isotropic antenna element. See “Construction”
on page 3-386.

2 Call step to compute the antenna response according to the
properties of phased.IsotropicAntennaElement. The behavior of
step is specific to each object in the toolbox.

Construction H = phased.IsotropicAntennaElement creates an isotropic antenna
system object, H. The object models an antenna element whose response
is 1 in all directions.

H = phased.IsotropicAntennaElement(Name,Value) creates an
isotropic antenna object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Operating frequency range

Specify the antenna element operating frequency range (in hertz)
as a 1-by-2 row vector in the form of [LowerBound HigherBound].
The default value of this property represents the UHF band. The
antenna element has 0 response outside the specified frequency
range.

Default: [3e8 1e9]

BackBaffled

Baffle the back of antenna element

3-386

phased.IsotropicAntennaElement

Set this property to true to baffle the back of the antenna
element. In this case, the antenna responses to all azimuth angles
beyond +/– 90 degrees from the broadside (0 degrees azimuth and
elevation) are 0.

When the value of this property is false, the back of the antenna
element is not baffled.

Default: false

Methods clone Create isotropic antenna object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of antenna

release Allow property value and input
characteristics changes

step Output response of antenna
element

Examples Construct an isotropic antenna operating over a frequency range from
800 MHz to 1.2 GHz. The operating frequency is 1 GHz. Find the
response of the antenna at the boresight. Then, plot the polar-pattern
elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;
resp = step(ha,fc,[0; 0]);

3-387

phased.IsotropicAntennaElement

plotResponse(ha,fc,'RespCut','El','Format','Polar');

See Also phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.ULA | phased.URA |

3-388

phased.IsotropicAntennaElement.clone

Purpose Create isotropic antenna object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-389

phased.IsotropicAntennaElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-390

phased.IsotropicAntennaElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-391

phased.IsotropicAntennaElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
IsotropicAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-392

phased.IsotropicAntennaElement.plotResponse

Purpose Plot response pattern of antenna

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element object.

FREQ

Operating frequency in hertz. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must

3-393

phased.IsotropicAntennaElement.plotResponse

be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

3-394

phased.IsotropicAntennaElement.plotResponse

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Plot the azimuth cut response of an isotropic antenna along 0 elevation
using a line plot. Assume the operating frequency is 1 GHz.

ha = phased.IsotropicAntennaElement;
plotResponse(ha,1e9)

3-395

phased.IsotropicAntennaElement.plotResponse

Construct an isotropic antenna operating over a frequency range from
800 MHz to 1.2 GHz. The operating frequency is 1 GHz. Find the
response of the antenna at the boresight. Then, plot the polar-pattern
elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;
resp = step(ha,fc,[0; 0]);

3-396

phased.IsotropicAntennaElement.plotResponse

plotResponse(ha,fc,'RespCut','El','Format','Polar');

See Also uv2azel | azel2uv

3-397

phased.IsotropicAntennaElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-398

phased.IsotropicAntennaElement.step

Purpose Output response of antenna element

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the antenna’s voltage response
RESP at operating frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector
of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

3-399

phased.IsotropicAntennaElement.step

Output
Arguments

RESP

Voltage response of antenna element. RESP is an M-by-L matrix.
RESP contains the responses at the M angles specified in ANG and
the L frequencies specified in FREQ.

Examples Construct an isotropic antenna operating over a frequency range from
800 MHz to 1.2 GHz. The operating frequency is 1 GHz. Find the
response of the antenna at the boresight. Then, plot the polar-pattern
elevation response of the antenna.

ha = phased.IsotropicAntennaElement(...
'FrequencyRange',[800e6 1.2e9]);

fc = 1e9;
resp = step(ha,fc,[0; 0]);
plotResponse(ha,fc,'RespCut','El','Format','Polar');

3-400

phased.IsotropicAntennaElement.step

See Also uv2azel | phitheta2azel

3-401

phased.LCMVBeamformer

Purpose Narrowband LCMV beamformer

Description The LCMVBeamformer object implements a linear constraint minimum
variance beamformer.

To compute the beamformed signal:

1 Define and set up your LCMV beamformer. See “Construction” on
page 3-402.

2 Call step to perform the beamforming operation according to the
properties of phased.LCMVBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.LCMVBeamformer creates a linear constraint minimum
variance (LCMV) beamformer System object, H. The object performs
narrowband LCMV beamforming on the received signal.

H = phased.LCMVBeamformer(Name,Value) creates an LCMV
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties Constraint

Constraint matrix

Specify the constraint matrix used for LCMV beamforming as an
N-by-K matrix. Each column of the matrix is a constraint and N
is the number of elements in the sensor array.

Default: [1; 1]

DesiredResponse

Desired response vector

Specify the desired response used for LCMV beamforming as a
column vector of length K, where K is the number of constraints in
the Constraint property. Each element in the vector defines the

3-402

phased.LCMVBeamformer

desired response of the constraint specified in the corresponding
column of the Constraint property.

Default: 1, which corresponds to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

3-403

phased.LCMVBeamformer

Methods clone Create LCMV beamformer object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform LCMV beamforming

Examples Apply an LCMV beamformer to a 5-element ULA, preserving the signal
from the desired direction.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hstv = phased.SteeringVector('SensorArray',ha,...

'PropagationSpeed',c);
hbf = phased.LCMVBeamformer;
hbf.Constraint = step(hstv,Fc,incidentAngle);
hbf.DesiredResponse = 1;
y = step(hbf, rx);

3-404

phased.LCMVBeamformer

% Plot
plot(t,real(rx(:,3)),'r:',t,real(y));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-405

phased.LCMVBeamformer

See Also phased.MVDRBeamformer | phased.PhaseShiftBeamformer |
phased.TimeDelayLCMVBeamformer |

Concepts • “Adaptive Beamforming”

3-406

phased.LCMVBeamformer.clone

Purpose Create LCMV beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-407

phased.LCMVBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-408

phased.LCMVBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-409

phased.LCMVBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
LCMVBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-410

phased.LCMVBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-411

phased.LCMVBeamformer.step

Purpose Perform LCMV beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
[Y,W] = step(___)

Description Y = step(H,X) performs LCMV beamforming on the input, X, and
returns the beamformed output in Y. X is an M-by-N matrix where N
is the number of elements of the sensor array. Y is a column vector
of length M.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights. This syntax is available when you set the
TrainingInputPort property to true. XT is a P-by-N matrix, where N is
the number of elements of the sensor array. P must be greater than N.

[Y,W] = step(___) returns the beamforming weights W. This syntax
is available when you set the WeightsOutputPort property to true. W
is a column vector of length N, where N is the number of elements in
the sensor array.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply an LCMV beamformer to a 5-element ULA, preserving the signal
from the desired direction.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;

3-412

phased.LCMVBeamformer.step

incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hstv = phased.SteeringVector('SensorArray',ha,...

'PropagationSpeed',c);
hbf = phased.LCMVBeamformer;
hbf.Constraint = step(hstv,Fc,incidentAngle);
hbf.DesiredResponse = 1;
y = step(hbf, rx);

3-413

phased.LinearFMWaveform

Purpose Linear FM pulse waveform

Description The LinearFMWaveform object creates a linear FM pulse waveform.

To obtain waveform samples:

1 Define and set up your linear FM waveform. See “Construction” on
page 3-414.

2 Call step to generate the linear FM waveform samples according to
the properties of phased.LinearFMWaveform. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.LinearFMWaveform creates a linear FM pulse waveform
System object, H. The object generates samples of a linear FM pulse
waveform.

H = phased.LinearFMWaveform(Name,Value) creates a linear FM
pulse waveform object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

3-414

phased.LinearFMWaveform

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping (in hertz) as a
positive scalar. The default value corresponds to 100 kHz.

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' or
'Down'.

Default: 'Up'

3-415

phased.LinearFMWaveform

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps
in the interval between 0 and B, where B is the SweepBandwidth
property value. If you set this property value to 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

Envelope

Envelope function

Specify the envelope function as one of 'Rectangular' or
'Gaussian’.

Default: 'Rectangular'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

NumSamples

Number of samples in output

3-416

phased.LinearFMWaveform

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

Methods bandwidth Bandwidth of linear FMwaveform

clone Create linear FM waveform object
with same property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getStretchProcessor Create stretch processor for
waveform

isLocked Locked status for input attributes
and nontunable properties

plot Plot linear FM pulse waveform

release Allow property value and input
characteristics changes

3-417

phased.LinearFMWaveform

reset Reset states of the linear FM
waveform object

step Samples of linear FM pulse
waveform

Examples Create and plot an upsweep linear FM pulse waveform.

hw = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',1e-4);

plot(hw);

3-418

phased.LinearFMWaveform

References [1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John
Wiley & Sons, 2004.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.RectangularWaveform | phased.SteppedFMWaveform |
phased.PhaseCodedWaveform |

3-419

phased.LinearFMWaveform

Related
Examples

• Waveform Analysis Using the Ambiguity Function

3-420

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.LinearFMWaveform.bandwidth

Purpose Bandwidth of linear FM waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for
the linear FM pulse waveform H. The bandwidth equals the value of the
SweepBandwidth property.

Input
Arguments

H

Linear FM pulse waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a linear FM pulse waveform.

H = phased.LinearFMWaveform;
bw = bandwidth(H)

3-421

phased.LinearFMWaveform.clone

Purpose Create linear FM waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-422

phased.LinearFMWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the linear FM waveform object H. Coeff is a column vector.

Examples Get the matched filter coefficients for a linear FM pulse.

hwav = phased.LinearFMWaveform('PulseWidth',5e-05,...
'SweepBandwidth',1e5,'OutputFormat','Pulses');

coeff = getMatchedFilter(hwav);
stem(real(coeff));
title('Matched filter coefficients, real part');

3-423

phased.LinearFMWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-424

phased.LinearFMWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-425

phased.LinearFMWaveform.getStretchProcessor

Purpose Create stretch processor for waveform

Syntax HS = getStretchProcessor(H)
HS = getStretchProcessor(H,refrng)
HS = getStretchProcessor(H,refrng,rngspan)
HS = getStretchProcessor(H,refrng,rngspan,v)

Description HS = getStretchProcessor(H) returns the stretch processor for the
waveform, H. HS is set up so the reference range corresponds to 1/4 of the
maximum unambiguous range of a pulse. The range span corresponds
to 1/10 of the distance traveled by the wave within the pulse width. The
propagation speed is the speed of light.

HS = getStretchProcessor(H,refrng) specifies the reference range.

HS = getStretchProcessor(H,refrng,rngspan) specifies the range
span. The reference interval is centered at refrng.

HS = getStretchProcessor(H,refrng,rngspan,v) specifies the
propagation speed.

Input
Arguments

H

Linear FM pulse waveform object.

refrng

Reference range, in meters, as a positive scalar.

Default: 1/4 of the maximum unambiguous range of a pulse

rngspan

Length of the interval of ranges of interest, in meters, as a positive
scalar. The center of the interval is the range value specified in
the refrng argument.

Default: 1/10 of the distance traveled by the wave within the
pulse width

3-426

phased.LinearFMWaveform.getStretchProcessor

v

Propagation speed, in meters per second, as a positive scalar.

Default: Speed of light

Output
Arguments

HS

Stretch processor as a phased.StretchProcessor System object.

Examples Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;
x = step(hwav);
c = 3e8; r = 4950;
num_sample = r/(c/(2*hwav.SampleRate));
x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);
y = step(hs,x);

Plot the spectrum of the resulting signal.

hp = spectrum.periodogram;
hpsd = psd(hp,y,'Fs',hs.SampleRate,'NFFT',2048,...

'CenterDC',true);
plot(hpsd);

3-427

phased.LinearFMWaveform.getStretchProcessor

Detect the range.

[~,rngidx] = findpeaks(pow2db(hpsd.Data/max(hpsd.Data)),...
'MinPeakHeight',-5);

rngfreq = hpsd.Frequencies(rngidx);
re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

hs.ReferenceRange,c);

See Also phased.StretchProcessor | stretchfreq2rng

3-428

phased.LinearFMWaveform.getStretchProcessor

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

3-429

../examples/range-estimation-using-stretch-processing.html

phased.LinearFMWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
LinearFMWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-430

phased.LinearFMWaveform.plot

Purpose Plot linear FM pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify
a Type value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PlotType

3-431

phased.LinearFMWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot an upsweep linear FM pulse waveform.

hw = phased.LinearFMWaveform('SweepBandwidth',1e5,...
'PulseWidth',1e-4);

plot(hw);

3-432

phased.LinearFMWaveform.plot

3-433

phased.LinearFMWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-434

phased.LinearFMWaveform.reset

Purpose Reset states of the linear FM waveform object

Syntax reset(H)

Description reset(H) resets the states of the LinearFMWaveform object, H.
Afterward, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

3-435

phased.LinearFMWaveform.step

Purpose Samples of linear FM pulse waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the linear FM pulse in a column vector
Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Construct a linear FM waveform with a sweep bandwidth of 300 kHz, a
sample rate of 1 MHz, a pulse width of 50 microseconds, and a pulse
repetition frequency of 10 kHz.

hfmwav = phased.LinearFMWaveform('SweepBandwidth',3e5,...
'OutputFormat','Pulses','SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',1e4);

% use step method to obtain the linear FM waveform
wav = step(hfmwav);

3-436

phased.MatchedFilter

Purpose Matched filter

Description The MatchedFilter object implements matched filtering of an input
signal.

To compute the matched filtered signal:

1 Define and set up your matched filter. See “Construction” on page
3-437.

2 Call step to perform the matched filtering according to the properties
of phased.MatchedFilter. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.MatchedFilter creates a matched filter System object, H.
The object performs matched filtering on the input data.

H = phased.MatchedFilter(Name,Value) creates a matched filter
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties CoefficientsSource

Source of matched filter coefficients

Specify whether the matched filter coefficients come from the
Coefficients property of this object or from an input argument
in step. Values of this property are:

'Property' The Coefficients property of this
object specifies the coefficients.

'Input port' An input argument in each invocation
of step specifies the coefficients.

Default: 'Property'

Coefficients

3-437

phased.MatchedFilter

Matched filter coefficients

Specify the matched filter coefficients as a column vector. This
property applies when you set the CoefficientsSource property
to 'Property'. This property is tunable.

Default: [1;1]

SpectrumWindow

Window for spectrum weighting

Specify the window used for spectrum weighting using one of
'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser', 'Taylor',
or 'Custom'. Spectrum weighting is often used with linear FM
waveform to reduce the sidelobes in the time domain. The object
computes the window length internally, to match the FFT length.

Default: 'None'

CustomSpectrumWindow

User-defined window for spectrum weighting

Specify the user-defined window for spectrum weighting using a
function handle or a cell array. This property applies when you
set the SpectrumWindow property to 'Custom'.

If CustomSpectrumWindow is a function handle, the specified
function takes the window length as the input and generates
appropriate window coefficients.

If CustomSpectrumWindow is a cell array, then the first cell must
be a function handle. The specified function takes the window
length as the first input argument, with other additional input
arguments if necessary, and generates appropriate window
coefficients. The remaining entries in the cell array are the
additional input arguments to the function, if any.

Default: @hamming

3-438

phased.MatchedFilter

SpectrumRange

Spectrum window coverage region

Specify the spectrum region on which the spectrum
window is applied as a 1-by-2 vector in the form of
[StartFrequency EndFrequency] (in hertz). This property
applies when you set the SpectrumWindow property to a value
other than 'None'.

Note that both StartFrequency and EndFrequency are measured
in baseband. That is, they are within [-Fs/2 Fs/2], where Fs is
the sample rate that you specify in the SampleRate property.
StartFrequency cannot be larger than EndFrequency.

Default: [0 1e5]

SampleRate

Coefficient sample rate

Specify the matched filter coefficients sample rate (in hertz)
as a positive scalar. This property applies when you set the
SpectrumWindow property to a value other than 'None'.

Default: 1e6

SidelobeAttenuation

Window sidelobe attenuation level

Specify the sidelobe attenuation level (in decibels) of a Chebyshev
or Taylor window as a positive scalar. This property applies
when you set the SpectrumWindow property to 'Chebyshev' or
'Taylor'.

Default: 30

Beta

Kaiser window parameter

3-439

phased.MatchedFilter

Specify the parameter that affects the Kaiser window sidelobe
attenuation as a nonnegative scalar. Please refer to kaiser
for more details. This property applies when you set the
SpectrumWindow property to 'Kaiser'.

Default: 0.5

Nbar

Number of nearly constant sidelobes in Taylor window

Specify the number of nearly constant level sidelobes adjacent
to the mainlobe in a Taylor window as a positive integer. This
property applies when you set the SpectrumWindow property to
'Taylor'.

Default: 4

GainOutputPort

Output gain

To obtain the matched filter gain, set this property to true and
use the corresponding output argument when invoking step.
If you do not want to obtain the matched filter gain, set this
property to false.

Default: false

Methods clone Create matched filter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

3-440

phased.MatchedFilter

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform matched filtering

Examples Construct a matched filter for a linear FM waveform.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = step(hw);
hmf = phased.MatchedFilter(...

'Coefficients',getMatchedFilter(hw));
y = step(hmf,x);
subplot(211),plot(real(x));
xlabel('Samples'); ylabel('Amplitude');
title('Input Signal');
subplot(212),plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Matched Filter Output');

3-441

phased.MatchedFilter

Apply the matched filter, using a Hamming window to do spectrum
weighting.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = step(hw);
hmf = phased.MatchedFilter(...

'Coefficients',getMatchedFilter(hw),...
'SpectrumWindow','Hamming');

y = step(hmf,x);
subplot(211),plot(real(x));
xlabel('Samples'); ylabel('Amplitude');

3-442

phased.MatchedFilter

title('Input Signal');
subplot(212),plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Matched Filter Output');

Apply the matched filter, using a custom Gaussian window for spectrum
weighting.

hw = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = step(hw);
hmf = phased.MatchedFilter(...

3-443

phased.MatchedFilter

'Coefficients',getMatchedFilter(hw),...
'SpectrumWindow','Custom',...
'CustomSpectrumWindow',{@gausswin,2.5});

y = step(hmf,x);
subplot(211),plot(real(x));
xlabel('Samples'); ylabel('Amplitude');
title('Input Signal');
subplot(212),plot(real(y));
xlabel('Samples'); ylabel('Amplitude');
title('Matched Filter Output');

3-444

phased.MatchedFilter

Algorithms The filtering operation uses the overlap-add method.

Spectrum weighting produces a transfer function

H F w F H F’() () ()

where w(F) is the window and H(F) is the original transfer function.

For further details on matched filter theory, see [1]or [2].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also phased.CFARDetector | pulsintphased.StretchProcessor |
phased.TimeVaryingGain | | taylorwin

3-445

phased.MatchedFilter.clone

Purpose Create matched filter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-446

phased.MatchedFilter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-447

phased.MatchedFilter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-448

phased.MatchedFilter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the MatchedFilter
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-449

phased.MatchedFilter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-450

phased.MatchedFilter.step

Purpose Perform matched filtering

Syntax Y = step(H,X)
Y = step(H,X,COEFF)
[Y,GAIN] = step(___)

Description Y = step(H,X) applies the matched filtering to the input X and returns
the filtered result in Y. The filter is applied along the first dimension.
Y and X have the same dimensions. The initial transient is removed
from the filtered result.

Y = step(H,X,COEFF) uses the input COEFF as the matched
filter coefficients. This syntax is available when you set the
CoefficientsSource property to 'Input port'.

[Y,GAIN] = step(___) returns additional output GAIN as the gain (in
decibels) of the matched filter. This syntax is available when you set
the GainOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Construct a linear FM waveform with a sweep bandwidth of 300 kHz
and a pulse width of 50 microseconds. Obtain the matched filter
coefficients using the getMatchedFilter method. Use the step method
for phased.MatchedFilter to obtain the matched filter output.

hfmwav = phased.LinearFMWaveform('SweepBandwidth',3e5,...
'OutputFormat','Pulses','SampleRate',1e6,...
'PulseWidth',50e-6,'PRF',1e4);

% use step method of phased.LinearFMWaveform

3-451

phased.MatchedFilter.step

% to obtain the linear FM waveform
wav = step(hfmwav);
% get matched filter coefficients for linear FM waveform
mfcoeffs = getMatchedFilter(hfmwav);
hmf = phased.MatchedFilter('Coefficients',mfcoeffs);
% use step method of phased.MatchedFilter to obtain matched filter
% output
mfoutput = step(hmf,wav);

3-452

phased.MVDRBeamformer

Purpose Narrowband MVDR (Capon) beamformer

Description The MVDRBeamformer object implements a minimum variance
distortionless response beamformer. This is also referred to as a Capon
beamformer.

To compute the beamformed signal:

1 Define and set up your MVDR beamformer. See “Construction” on
page 3-453.

2 Call step to perform the beamforming operation according to the
properties of phased.MVDRBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.MVDRBeamformer creates a minimum variance
distortionless response (MVDR) beamformer System object, H. The
object performs MVDR beamforming on the received signal.

H = phased.MVDRBeamformer(Name,Value) creates an MVDR
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-453

phased.MVDRBeamformer

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

3-454

phased.MVDRBeamformer

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a
two-row matrix. Each column of the matrix has the form
[AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle
must be between –180 and 180 degrees, and each elevation angle
must be between –90 and 90 degrees. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods clone Create MVDR beamformer object
with same property values

getNumInputs Number of expected inputs to
step method

3-455

phased.MVDRBeamformer

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform MVDR beamforming

Examples Apply an MVDR beamformer to a 5-element ULA. The incident angle of
the signal is 45 degrees in azimuth and 0 degree in elevation.

% Signal simulation
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.MVDRBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'OperatingFrequency',Fc,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

% Plot signals
plot(t,real(rx(:,3)),'r:',t,real(y));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

% Plot response pattern
figure;
plotResponse(ha,Fc,c,'Weights',w);

3-456

phased.MVDRBeamformer

3-457

phased.MVDRBeamformer

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.FrostBeamformer | phased.PhaseShiftBeamformer |
phased.LCMVBeamformer | uv2azel | phitheta2azel

3-458

phased.MVDRBeamformer.clone

Purpose Create MVDR beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-459

phased.MVDRBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-460

phased.MVDRBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-461

phased.MVDRBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
MVDRBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-462

phased.MVDRBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-463

phased.MVDRBeamformer.step

Purpose Perform MVDR beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
Y = step(H,X,XT,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs MVDR beamforming on the input, X, and
returns the beamformed output in Y. This syntax uses X as the training
samples to calculate the beamforming weights.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights. This syntax is available when you set the
TrainingInputPort property to true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is
available when you set the TrainingInputPort property to true and
set the DirectionSource property to 'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-464

phased.MVDRBeamformer.step

Input
Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array
contains subarrays, N is the number of subarrays; otherwise, N
is the number of elements. If you set the TrainingInputPort to
false, M must be larger than N; otherwise,M can be any positive
integer.

XT

Training samples, specified as a P-by-N matrix. If the sensor
array contains subarrays, N is the number of subarrays;
otherwise, N is the number of elements. P must be larger than N.

ANG

Beamforming directions, specified as a two-row matrix. Each
column has the form [AzimuthAngle; ElevationAngle], in degrees.
Each azimuth angle must be between –180 and 180 degrees, and
each elevation angle must be between –90 and 90 degrees.

Output
Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the
number of rows of X and L is the number of beamforming
directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the
number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the
number of elements.

Examples Apply an MVDR beamformer to a 5-element ULA. The incident angle of
the signal is 45 degrees in azimuth and 0 degree in elevation.

% Signal simulation

3-465

phased.MVDRBeamformer.step

t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.MVDRBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'OperatingFrequency',Fc,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

See Also uv2azel | phitheta2azel

3-466

phased.MVDREstimator

Purpose MVDR (Capon) spatial spectrum estimator for ULA

Description The MVDREstimator object computes a minimum variance distortionless
response (MVDR) spatial spectrum estimate for a uniform linear array.
This DOA estimator is also referred to as a Capon DOA estimator.

To estimate the spatial spectrum:

1 Define and set up your MVDR spatial spectrum estimator. See
“Construction” on page 3-467.

2 Call step to estimate the spatial spectrum according to the properties
of phased.MVDREstimator. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.MVDREstimator creates an MVDR spatial spectrum
estimator System object, H. The object estimates the incoming signal’s
spatial spectrum using a narrowband MVDR beamformer for a uniform
linear array (ULA).

H = phased.MVDREstimator(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-467

phased.MVDREstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles
are broadside angles and must be between –90 and 90, inclusive.
You must specify the angles in ascending order.

3-468

phased.MVDREstimator

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create MVDR spatial spectrum
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

3-469

phased.MVDREstimator

reset Reset states of MVDR spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing of 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation. This example also
plots the spatial spectrum.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
plotSpectrum(hdoa);

3-470

phased.MVDREstimator

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2azphased.MVDREstimator2D |

3-471

phased.MVDREstimator.clone

Purpose Create MVDR spatial spectrum estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-472

phased.MVDREstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-473

phased.MVDREstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-474

phased.MVDREstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the MVDREstimator
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-475

phased.MVDREstimator.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

Title

String to use as title of figure.

Default: Empty string

3-476

phased.MVDREstimator.plotSpectrum

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing of 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);
plotSpectrum(hdoa);

3-477

phased.MVDREstimator.plotSpectrum

3-478

phased.MVDREstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-479

phased.MVDREstimator.reset

Purpose Reset states of MVDR spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the MVDREstimator object, H.

3-480

phased.MVDREstimator.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X is a matrix whose columns correspond to channels. Y is
a column vector representing the magnitude of the estimated spatial
spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a row vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing of 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 60 degrees in azimuth and –5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
% additive noise

3-481

phased.MVDREstimator.step

noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR estimator object
hdoa = phased.MVDREstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

% use the MVDREstimator step method to obtain the DOA estimates
[y,doas] = step(hdoa,x+noise);
doas = broadside2az(sort(doas),[20 -5]);

3-482

phased.MVDREstimator2D

Purpose 2-D MVDR (Capon) spatial spectrum estimator

Description The MVDREstimator2D object computes a 2-D minimum variance
distortionless response (MVDR) spatial spectrum estimate. This DOA
estimator is also referred to as a Capon estimator.

To estimate the spatial spectrum:

1 Define and set up your 2-D MVDR spatial spectrum estimator. See
“Construction” on page 3-483.

2 Call step to estimate the spatial spectrum according to the properties
of phased.MVDREstimator2D. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.MVDREstimator2D creates a 2-D MVDR spatial spectrum
estimator System object, H. The object estimates the signal’s spatial
spectrum using a narrowband MVDR beamformer.

H = phased.MVDREstimator2D(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-483

phased.MVDREstimator2D

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles (degrees)

Specify the azimuth scan angles (in degrees) as a real vector. The
angles must be between –180 and 180, inclusive. You must specify
the angles in ascending order.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or
scalar. The angles must be between –90 and 90, inclusive. You
must specify the angles in ascending order.

Default: 0

3-484

phased.MVDREstimator2D

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAOutputPort property to true.

Default: 1

Methods clone Create 2-D MVDR spatial
spectrum estimator object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input
characteristics changes

3-485

phased.MVDREstimator2D

reset Reset states of 2-D MVDR spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees
in azimuth and 20 degrees in elevation. This example also plots the
spatial spectrum.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR DOA estimator for URA
hdoa = phased.MVDREstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates
[~,doas] = step(hdoa,x+noise);
plotSpectrum(hdoa);

3-486

phased.MVDREstimator2D

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.MVDREstimator | uv2azel | phitheta2azel

3-487

phased.MVDREstimator2D.clone

Purpose Create 2-D MVDR spatial spectrum estimator object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-488

phased.MVDREstimator2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-489

phased.MVDREstimator2D.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-490

phased.MVDREstimator2D.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
MVDREstimator2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-491

phased.MVDREstimator2D.plotSpectrum

Purpose Plot spatial spectrum

Syntax plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

Description plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

Input
Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

Title

String to use as title of figure.

Default: Empty string

3-492

phased.MVDREstimator2D.plotSpectrum

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR DOA estimator for URA
hdoa = phased.MVDREstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates
[~,doas] = step(hdoa,x+noise);
plotSpectrum(hdoa);

3-493

phased.MVDREstimator2D.plotSpectrum

3-494

phased.MVDREstimator2D.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-495

phased.MVDREstimator2D.reset

Purpose Reset states of 2-D MVDR spatial spectrum estimator object

Syntax reset(H)

Description reset(H) resets the states of the MVDREstimator2D object, H.

3-496

phased.MVDREstimator2D.step

Purpose Perform spatial spectrum estimation

Syntax Y = step(H,X)
[Y,ANG] = step(H,X)

Description Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X is a matrix whose columns correspond to channels. Y
is a matrix representing the magnitude of the estimated 2-D spatial
spectrum. The row dimension of Y is equal to the number of angles in
the ElevationScanAngles and the column dimension of Y is equal to
the number of angles in the AzimuthScanAngles property.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a two-row matrix where the first row represents estimated
azimuth and the second row represents estimated elevation (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is –37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];

3-497

phased.MVDREstimator2D.step

fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[-37 0;17 20]',fc);
% additive noise
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
% construct MVDR DOA estimator for URA
hdoa = phased.MVDREstimator2D('SensorArray',ha,...

'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

% use the step method to obtain the output and DOA estimates
[~,doas] = step(hdoa,x+noise);

See Also azel2uv | azel2phitheta

3-498

phased.OmnidirectionalMicrophoneElement

Purpose Omnidirectional microphone

Description The OmnidirectionalMicrophoneElement object models an
omnidirectional microphone with an equal response in all directions.

To compute the response of the microphone element for specified
directions:

1 Define and set up your omnidirectional microphone element. See
“Construction” on page 3-499.

2 Call step to estimate the microphone response according to the
properties of phased.OmnidirectionalMicrophoneElement. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.OmnidirectionalMicrophoneElement creates an
omnidirectional microphone system object, H, that models an
omnidirectional microphone element whose response is 1 in all
directions.

H = phased.OmnidirectionalMicrophoneElement(Name,Value)
creates an omnidirectional microphone object, H, with each
specified property set to the specified value. You can specify
additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties FrequencyRange

Operating frequency range

Specify the operating frequency range (in hertz) of the microphone
element as a 1x2 row vector in the form of [LowerBound
HigherBound]. The default value of this property represents the
audible range. The microphone element has no response outside
the specified frequency range.

Default: [20 20e3]

BackBaffled

3-499

phased.OmnidirectionalMicrophoneElement

Baffle the back of microphone element

Set this property to true to baffle the back of the microphone
element. In this case, the microphone responses to all azimuth
angles beyond +/– 90 degrees from the broadside (0 degree
azimuth and elevation) are 0.

When the value of this property is false, the back of the
microphone element is not baffled.

Default: false

Methods clone Create omnidirectional
microphone object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of
microphone

release Allow property value and input
characteristics changes

step Output response of microphone

Examples Create an omnidirectional microphone. Find the microphone response
at 200, 300, and 400 Hz for the incident angle [0;0]. Plot the azimuth
response of the microphone.

h = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 2e3]);

fc = [200 300 400];

3-500

phased.OmnidirectionalMicrophoneElement

ang = [0;0];
resp = step(h,fc,ang);
plotResponse(h,200,'RespCut','Az','Format','Polar');

See Also phased.CustomMicrophoneElement | phased.ULA | phased.URA |
phased.ConformalArray |

3-501

phased.OmnidirectionalMicrophoneElement.clone

Purpose Create omnidirectional microphone object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-502

phased.OmnidirectionalMicrophoneElement.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-503

phased.OmnidirectionalMicrophoneElement.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-504

phased.OmnidirectionalMicrophoneElement.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
OmnidirectionalMicrophoneElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-505

phased.OmnidirectionalMicrophoneElement.plotResponse

Purpose Plot response pattern of microphone

Syntax plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Element object.

FREQ

Operating frequency in hertz. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must

3-506

phased.OmnidirectionalMicrophoneElement.plotResponse

be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

3-507

phased.OmnidirectionalMicrophoneElement.plotResponse

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Plot response of omnidirectional microphone.

h = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

plotResponse(h,200);

3-508

phased.OmnidirectionalMicrophoneElement.plotResponse

See Also uv2azel | azel2uv

3-509

phased.OmnidirectionalMicrophoneElement.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-510

phased.OmnidirectionalMicrophoneElement.step

Purpose Output response of microphone

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the microphone’s magnitude
response, RESP, at frequencies specified in FREQ and directions specified
in ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

3-511

phased.OmnidirectionalMicrophoneElement.step

Output
Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains
the responses of the microphone element at the M angles specified
in ANG and the L frequencies specified in FREQ.

Examples Create an omnidirectional microphone. Find the microphone response
at 200, 300, and 400 Hz for the incident angle [0;0]. Plot the azimuth
response of the microphone.

h = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 2e3]);

fc = [200 300 400];
ang = [0;0];
resp = step(h,fc,ang);
plotResponse(h,200,'RespCut','Az','Format','Polar');

3-512

phased.OmnidirectionalMicrophoneElement.step

See Also uv2azel | phitheta2azel

3-513

phased.PartitionedArray

Purpose Phased array partitioned into subarrays

Description The PartitionedArray object represents a phased array that is
partitioned into one or more subarrays.

To obtain the response of the subarrays in a partitioned array:

1 Define and set up your partitioned array. See “Construction” on
page 3-514.

2 Call step to compute the response of the subarrays according to the
properties of phased.PartitionedArray. The behavior of step is
specific to each object in the toolbox.

You can also specify a PartitionedArray object as the value of the
SensorArray or Sensor property of objects that perform beamforming,
steering, and other operations.

Construction H = phased.PartitionedArray creates a partitioned array System
object, H. This object represents an array that is partitioned into
subarrays.

H = phased.PartitionedArray(Name,Value) creates a partitioned
array object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN).

Properties Array

Array aperture

Specify a phased array as a phased.ULA, phased.URA, or
phased.ConformalArray object.

Default: phased.ULA('NumElements',4)

SubarraySelection

Subarray definition matrix

3-514

phased.PartitionedArray

Specify the subarray selection as an M-by-N matrix. M is the
number of subarrays and N is the total number of elements in the
array. Each row of the matrix indicates which elements belong to
the corresponding subarray. Each entry in the matrix is 1 or 0,
where 1 indicates that the element appears in the subarray and 0
indicates the opposite. Each row must contain at least one 1.

The phase center of each subarray is at its geometric center.
The SubarraySelection and Array properties determine the
geometric center.

Default: [1 1 0 0; 0 0 1 1]

SubarraySteering

Subarray steering method

Specify the method of steering the subarray as one of 'None' |
'Phase' | 'Time'.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform
subarray steering. The property value is a positive scalar in
hertz. This property applies when you set the SubarraySteering
property to 'Phase'.

Default: 3e8

Methods clone Create partitioned array with
same property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

3-515

phased.PartitionedArray

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getNumSubarrays Number of subarrays in array

getSubarrayPosition Positions of subarrays in array

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of array

release Allow property value and input
characteristics changes

step Output responses of subarrays

viewArray View array geometry

Examples Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two
2-element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

3-516

phased.PartitionedArray

Response of Subarrays in Partitioned ULA

Calculate the response at the boresight of a 4-element ULA partitioned
into two 2-element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

3-517

phased.PartitionedArray

Calculate the response of the subarrays at boresight. Assume the
operating frequency is 1 GHz and the propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8);

See Also phased.ULA | phased.URA | phased.ConformalArray |
phased.ReplicatedSubarray |

Related
Examples

• Subarrays in Phased Array Antennas
• Phased Array Gallery

Concepts • “Subarrays Within Arrays”

3-518

../examples/subarrays-in-phased-array-antennas.html
../examples/phased-array-gallery.html

phased.PartitionedArray.clone

Purpose Create partitioned array with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-519

phased.PartitionedArray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

3-520

phased.PartitionedArray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of subarrays in the array H. Each column of Y is the received
signal at the corresponding subarray, with all incoming signals
combined.

Examples Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA partitioned into four
4-element ULAs.

Create a 16-element ULA, and partition it into 4-element ULAs.

ha = phased.ULA('NumElements',16);
hpa = phased.PartitionedArray('Array',ha,...

'SubarraySelection',....
[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Simulate receiving signals from 10 degrees and 30 degrees azimuth.
Both signals have an elevation angle of 0 degrees. Assume the
propagation speed is the speed of light and the carrier frequency of the
signal is 100 MHz.

Y = collectPlaneWave(hpa,randn(4,2),[10 30],...
1e8,physconst('LightSpeed'));

3-521

phased.PartitionedArray.collectPlaneWave

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in the
array and only models the array factor among subarrays. Therefore, the
result does not depend on whether the subarray is steered.

See Also uv2azel | phitheta2azel

3-522

phased.PartitionedArray.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)

Description POS = getElementPosition(H) returns the element positions in the
array H.

Input
Arguments

H

Partitioned array object.

Output
Arguments

POS

Element positions in array. POS is a 3-by-N matrix, where N is
the number of elements in H. Each column of POS defines the
position of an element in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Elements in Partitioned Array

Obtain the positions of the six elements in a partitioned array.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

POS = getElementPosition(H);

See Also getSubarrayPosition |

3-523

phased.PartitionedArray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements in the array
object H.

Input
Arguments

H

Partitioned array object.

Examples Number of Elements in Partitioned Array

Obtain the number of elements in an array that is partitioned into
subarrays.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

N = getNumElements(H);

See Also getNumSubarrays |

3-524

phased.PartitionedArray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-525

phased.PartitionedArray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-526

phased.PartitionedArray.getNumSubarrays

Purpose Number of subarrays in array

Syntax N = getNumSubarrays(H)

Description N = getNumSubarrays(H) returns the number of subarrays in the
array object H. This number matches the number of rows in the
SubarraySelection property of H.

Input
Arguments

H

Partitioned array object.

Examples Number of Subarrays in Partitioned Array

Obtain the number of subarrays in a partitioned array.

H = phased.PartitionedArray('Array',...

phased.ULA('NumElements',5),...

'SubarraySelection',[1 1 1 0 0; 0 0 1 1 1]);

N = getNumSubarrays(H);

See Also getNumElements |

3-527

phased.PartitionedArray.getSubarrayPosition

Purpose Positions of subarrays in array

Syntax POS = getSubarrayPosition(H)

Description POS = getSubarrayPosition(H) returns the subarray positions in
the array H.

Input
Arguments

H

Partitioned array object.

Output
Arguments

POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is
the number of subarrays in H. Each column of POS defines the
position of a subarray in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Subarrays in Partitioned Array

Obtain the positions of the two subarrays in a partitioned array.

H = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...

'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);

POS = getSubarrayPosition(H);

See Also getElementPosition |

3-528

phased.PartitionedArray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
PartitionedArray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-529

phased.PartitionedArray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the range
specified by a property of H.Array.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-530

phased.PartitionedArray.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

3-531

phased.PartitionedArray.plotResponse

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

SteerAng

Subarray steering angle. SteerAng can be either a 2-element
column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this
case, the elevation angle is assumed to be 0.

This option is applicable only if the SubarraySteering property
of H is 'Phase' or 'Time'.

Default: [0;0]

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Weights

Weights applied to the array, specified as a length-N column
vector or N-by-M matrix. N is the number of subarrays in the
array. M is the number of frequencies in FREQ. If Weights is a
vector, the function applies the same weights to each frequency. If

3-532

phased.PartitionedArray.plotResponse

Weights is a matrix, the function applies each column of weight
values to the corresponding frequency in FREQ.

Examples Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two
2-element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

3-533

phased.PartitionedArray.plotResponse

See Also uv2azel | azel2uv

3-534

phased.PartitionedArray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-535

phased.PartitionedArray.step

Purpose Output responses of subarrays

Syntax RESP = step(H,FREQ,ANG,V)
RESP = step(H,FREQ,ANG,V,STEERANGLE)

Description RESP = step(H,FREQ,ANG,V) returns the responses RESP of the
subarrays in the array, at operating frequencies specified in FREQ and
directions specified in ANG. The phase center of each subarray is at
its geometric center. V is the propagation speed. The elements within
each subarray are connected to the subarray phase center using an
equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the
subarray’s steering direction. This syntax is available when you set the
SubarraySteering property to either 'Phase' or 'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Partitioned array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified
by a property of H.Array.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at
frequencies outside that range.

3-536

phased.PartitionedArray.step

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a
scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a
2-element column vector or a scalar.

If STEERANGLE is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth
angle. In this case, the elevation angle is assumed to be 0.

Output
Arguments

RESP

Responses of subarrays of array. RESP has dimensions
N-by-M-by-L. N is the number of subarrays in the phased array.
Each column of RESP contains the responses of the subarrays
for the corresponding direction specified in ANG. Each of the L
pages of RESP contains the responses of the subarrays for the
corresponding frequency specified in FREQ.

3-537

phased.PartitionedArray.step

Examples Response of Subarrays in Partitioned ULA

Calculate the response at the boresight of a 4-element ULA partitioned
into two 2-element ULAs.

Create a 4-element ULA, and partition it into 2-element ULAs.

h = phased.ULA('NumElements',4,'ElementSpacing',0.5);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',[1 1 0 0;0 0 1 1]);

Calculate the response of the subarrays at boresight. Assume the
operating frequency is 1 GHz and the propagation speed is 3e8 m/s.

RESP = step(ha,1e9,[0;0],3e8);

See Also uv2azel | phitheta2azel

3-538

phased.PartitionedArray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handles of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

3-539

phased.PartitionedArray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

ShowSubarray

Vector specifying the indices of subarrays to highlight in the
figure. Each number in the vector must be an integer between
1 and the number of subarrays. You can also specify the string
'All' to highlight all subarrays of the array or 'None' to suppress
the subarray highlighting. The highlighting uses different colors
for different subarrays, and white for elements that occur in
multiple subarrays.

Default: 'All'

Title

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handles of array elements in figure window.

Examples Plots Highlighting Overlapped Subarrays

Display the geometry of a uniform linear array having overlapped
subarrays.

Create a 16-element ULA that has five 4-element subarrays. Some
elements occur in more than one subarray.

h = phased.ULA(16);
ha = phased.PartitionedArray('Array',h,...

'SubarraySelection',...

3-540

phased.PartitionedArray.viewArray

[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Display the geometry of the array, highlighting all subarrays.

viewArray(ha);

Each color other than white represents a different subarray. White
represents elements that occur in multiple subarrays.

Examine the overlapped subarrays by creating separate figures that
highlight the first, second, and third subarrays. In each figure, dark
blue represents the highlighted elements.

for idx = 1:3

3-541

phased.PartitionedArray.viewArray

figure;
viewArray(ha,'ShowSubarray',idx,...

'Title',['Subarray #' num2str(idx)]);
end

3-542

phased.PartitionedArray.viewArray

3-543

phased.PartitionedArray.viewArray

See Also phased.ArrayResponse |

Related
Examples

• Phased Array Gallery

3-544

../examples/phased-array-gallery.html

phased.PhaseCodedWaveform

Purpose Phase-coded pulse waveform

Description The PhaseCodedWaveform object creates a phase-coded pulse waveform.

To obtain waveform samples:

1 Define and set up your phase-coded pulse waveform. See
“Construction” on page 3-545.

2 Call step to generate the phase-coded pulse waveform samples
according to the properties of phased.PhaseCodedWaveform. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.PhaseCodedWaveform creates a phase-coded pulse
waveform System object, H. The object generates samples of a
phase-coded pulse.

H = phased.PhaseCodedWaveform(Name,Value) creates a phase-coded
pulse waveform object, H, with additional options specified by one or
more Name,Value pair arguments. Name is a property name, and Value
is the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Properties SampleRate

Sample rate

Specify the sample rate in hertz as a positive scalar. The default
value of this property corresponds to 1 MHz. The value of this
property must satisfy these constraints:

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

• (SampleRate * ChipWidth) is an integer value.

Default: 1e6

3-545

phased.PhaseCodedWaveform

Type

Type of phase code

Specify the type of code used in phase modulation. Valid values
are:

• 'Barker'

• 'Frank'

• 'P1'

• 'P2'

• 'P3'

• 'P4'

• 'Px'

• 'Zadoff-Chu'

Default: 'Frank'

ChipWidth

Duration of each chip

Specify the duration of each chip in a phase-coded waveform in
seconds as a positive scalar.

The value of this property must satisfy these constraints:

• ChipWidth is less than or equal to (1./(NumChips * PRF)).

• (SampleRate * ChipWidth) is an integer value.

Default: 1e-5

NumChips

Number of chips

3-546

phased.PhaseCodedWaveform

Specify the number of chips in a phase-coded waveform as a
positive integer. The value of this property must be less than or
equal to (1./(ChipWidth * PRF)).

The table shows additional constraints on the number of chips
for different code types.

If Type Property Is... Then NumChips Property
Must Be...

'Frank', 'P1', or 'Px' A perfect square

'P2' An even number that is a
perfect square

'Barker' 2, 3, 4, 5, 7, 11, or 13

Default: 4

SequenceIndex

Zadoff-Chu sequence index

Specify the sequence index used in Zadoff-Chu code as a positive
integer. This property applies only when you set the Type
property to 'Zadoff-Chu'. The value of SequenceIndex must be
relatively prime to the value of the NumChips property.

Default: 1

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use

3-547

phased.PhaseCodedWaveform

successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

3-548

phased.PhaseCodedWaveform

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

Methods bandwidth Bandwidth of phase-coded
waveform

clone Create phase-coded waveform
object with same property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot phase-coded pulse waveform

release Allow property value and input
characteristics changes

reset Reset states of phase-coded
waveform object

step Samples of phase-coded waveform

Examples Create and plot a phase-coded pulse waveform that uses the Zadoff-Chu
code.

3-549

phased.PhaseCodedWaveform

hw = phased.PhaseCodedWaveform('Type','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

plot(hw);

Generate samples of a phase-coded pulse waveform that uses the
Zadoff-Chu code, and plot the samples.

hw = phased.PhaseCodedWaveform('Type','Zadoff-Chu',...

3-550

phased.PhaseCodedWaveform

'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

x = step(hw);
figure;
plot(real(x)); title('Waveform Output, Real Part');
xlabel('Samples'); ylabel('Amplitude (V)');

Algorithms A 2-chip Barker code can use [1 –1] or [1 1] as the sequence of
amplitudes. This software implements [1 –1].

3-551

phased.PhaseCodedWaveform

A 4-chip Barker code can use [1 1 –1 1] or [1 1 1 –1] as the sequence of
amplitudes. This software implements [1 1 –1 1].

A Zadoff-Chu code can use a clockwise or counterclockwise
sequence of phases. This software implements the latter,

such as f k() SequenceIndex NumChips instead of

 f k() SequenceIndex NumChips . In these expressions, k is the
index of the chip and f(k) is a function of k.

For further details, see [1].

References [1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John
Wiley & Sons, 2004.

See Also phased.LinearFMWaveform | phased.SteppedFMWaveform |
phased.RectangularWaveform |

Related
Examples

• Waveform Analysis Using the Ambiguity Function

Concepts • “Phase-Coded Waveforms”

3-552

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.PhaseCodedWaveform.bandwidth

Purpose Bandwidth of phase-coded waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses
for the phase-coded pulse waveform, H. The bandwidth value is the
reciprocal of the chip width.

Input
Arguments

H

Phase-coded waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a Frank code waveform.

H = phased.PhaseCodedWaveform;
bw = bandwidth(H);

3-553

phased.PhaseCodedWaveform.clone

Purpose Create phase-coded waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-554

phased.PhaseCodedWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the phase-coded waveform object, H. Coeff is a column vector.

Input
Arguments

H

Phase-coded waveform object.

Output
Arguments

Coeff

Column vector containing coefficients of the matched filter for H.

Examples Get the matched filter coefficients for a phase-coded pulse waveform
that uses the Zadoff-Chu code.

hwav = phased.PhaseCodedWaveform('Type','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

coeff = getMatchedFilter(hwav);
stem(real(coeff));
title('Matched Filter Coefficients, Real Part');
axis([0 17 -1.1 1.1])

3-555

phased.PhaseCodedWaveform.getMatchedFilter

3-556

phased.PhaseCodedWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-557

phased.PhaseCodedWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-558

phased.PhaseCodedWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
PhaseCodedWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-559

phased.PhaseCodedWaveform.plot

Purpose Plot phase-coded pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify
a Type value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PlotType

3-560

phased.PhaseCodedWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot a phase-coded pulse waveform that uses the Zadoff-Chu
code.

hw = phased.PhaseCodedWaveform('Type','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

plot(hw);

3-561

phased.PhaseCodedWaveform.plot

3-562

phased.PhaseCodedWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-563

phased.PhaseCodedWaveform.reset

Purpose Reset states of phase-coded waveform object

Syntax reset(H)

Description reset(H) resets the states of the PhaseCodedWaveform object, H.
Afterward, the next call to step restarts the phase sequence from the
beginning. Also, if the PRF property is a vector, the next call to step
uses the first PRF value in the vector.

3-564

phased.PhaseCodedWaveform.step

Purpose Samples of phase-coded waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the phase-coded pulse in a column
vector, Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Phase-coded waveform object.

Output
Arguments

Y

Column vector containing the waveform samples.

Examples Generate samples of two pulses of a phase-coded pulse waveform that
uses the Zadoff-Chu code.

hw = phased.PhaseCodedWaveform('Type','Zadoff-Chu',...
'ChipWidth',1e-6,'NumChips',16,...
'OutputFormat','Pulses','NumPulses',2);

x = step(hw);
figure;
plot(real(x)); title('Waveform Output, Real Part');
xlabel('Samples'); ylabel('Amplitude (V)');

3-565

phased.PhaseCodedWaveform.step

3-566

phased.PhaseShiftBeamformer

Purpose Narrowband phase shift beamformer

Description The PhaseShiftBeamformer object implements a phase shift
beamformer.

To compute the beamformed signal:

1 Define and set up your phase shift beamformer. See “Construction”
on page 3-567.

2 Call step to perform the beamforming operation according to the
properties of phased.PhaseShiftBeamformer. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.PhaseShiftBeamformer creates a conventional phase
shift beamformer System object, H. The object performs phase shift
beamforming on the received signal.

H = phased.PhaseShiftBeamformer(Name,Value) creates a phase
shift beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-567

phased.PhaseShiftBeamformer

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a
scalar. The default value of this property corresponds to 300 MHz.

Default: 3e8

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a
two-row matrix. Each column of the matrix has the form
[AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle
must be between –180 and 180 degrees, and each elevation angle
must be between –90 and 90 degrees. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

3-568

phased.PhaseShiftBeamformer

WeightsNormalization

Approach for normalizing beamformer weights

If you set this property value to 'Distortionless', the gain
toward the beamforming direction is 0 dB. If you set this property
value to 'Preserve power', the norm of the weights is 1.

Default: 'Distortionless'

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods clone Create phase shift beamformer
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform phase shift beamforming

3-569

phased.PhaseShiftBeamformer

Examples Apply phase shift beamforming to the signal received by a 5-element
ULA. The beamforming direction is 45 degrees azimuth and 0 degrees
elevation.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hbf = phased.PhaseShiftBeamformer('SensorArray',ha,...

'OperatingFrequency',Fc,'PropagationSpeed',c,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

% Plot signals
plot(t,real(rx(:,3)),'r:',t,real(y));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

% Plot response pattern
figure;
plotResponse(ha,Fc,c,'Weights',w);

3-570

phased.PhaseShiftBeamformer

3-571

phased.PhaseShiftBeamformer

Algorithms The phase shift beamformer uses the conventional delay-and-sum
beamforming algorithm. The beamformer assumes the signal is
narrowband, so a phase shift can approximate the required delay. The
beamformer preserves the incoming signal power.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-572

phased.PhaseShiftBeamformer

See Also phased.LCMVBeamformer | phased.MVDRBeamformer |
phased.SubbandPhaseShiftBeamformer | uv2azel | phitheta2azel

3-573

phased.PhaseShiftBeamformer.clone

Purpose Create phase shift beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-574

phased.PhaseShiftBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-575

phased.PhaseShiftBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-576

phased.PhaseShiftBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
PhaseShiftBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-577

phased.PhaseShiftBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-578

phased.PhaseShiftBeamformer.step

Purpose Perform phase shift beamforming

Syntax Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs phase shift beamforming on the input, X, and
returns the beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array
contains subarrays, N is the number of subarrays; otherwise, N is
the number of elements.

ANG

Beamforming directions, specified as a two-row matrix. Each
column has the form [AzimuthAngle; ElevationAngle], in degrees.

3-579

phased.PhaseShiftBeamformer.step

Each azimuth angle must be between –180 and 180 degrees, and
each elevation angle must be between –90 and 90 degrees.

Output
Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the
number of rows of X and L is the number of beamforming
directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the
number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the
number of elements.

Examples Apply phase shift beamforming to the signal received by a 5-element
ULA. The beamforming direction is 45 degrees azimuth and 0 degrees
elevation.

% Simulate signal
t = (0:1000)';
x = sin(2*pi*0.01*t);
c = 3e8; Fc = 3e8;
incidentAngle = [45; 0];
ha = phased.ULA('NumElements',5);
x = collectPlaneWave(ha,x,incidentAngle,Fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

% Beamforming
hbf = phased.PhaseShiftBeamformer('SensorArray',ha,...

'OperatingFrequency',Fc,'PropagationSpeed',c,...
'Direction',incidentAngle,'WeightsOutputPort',true);

[y,w] = step(hbf,rx);

Algorithms The phase shift beamformer uses the conventional delay-and-sum
beamforming algorithm. The beamformer assumes the signal is

3-580

phased.PhaseShiftBeamformer.step

narrowband, so a phase shift can approximate the required delay. The
beamformer preserves the incoming signal power.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

3-581

phased.Platform

Purpose Motion platform

Description The Platform object models the translational motion of a target or
array in space.

To model a moving platform:

1 Define and set up your platform. See “Construction” on page 3-582.

2 Call step to move the platform following a defined path according to
the properties of phased.Platform. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.Platform creates a platform System object, H. The object
models translational motion in space.

H = phased.Platform(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.Platform(POS,V,Name,Value)) creates a platform object,
H, with the InitialPosition property set to POS, the Velocity
property set to V, and other specified property Names set to the specified
Values. POS and V are value-only arguments. To specify a value-only
argument, you must also specify all preceding value-only arguments.
You can specify name-value pair arguments in any order.

Properties InitialPosition

Initial position of platform

Specify the initial position of the platform as a 3-by-1 column
vector in the form of [x; y; z] (in meters).

Default: [0; 0; 0]

Velocity

3-582

phased.Platform

Velocity of platform

Specify the current velocity of the platform as a 3-by-1 vector
in the form of [x; y; z] (in meters/second). This property is
tunable.

Default: [0; 0; 0]

OrientationAxes

Orientation axes of platform

Specify the three axes that define the local (x, y, z) coordinate
system at the platform as a 3-by-3 matrix (one axis in each
column). The three axes must be orthonormal.

Default: [1 0 0;0 1 0;0 0 1]

OrientationAxesOutputPort

Output orientation axes

To obtain the orientation axes of the platform, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the orientation axes of the
platform, set this property to false.

Default: false

Methods clone Create platform object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

3-583

phased.Platform

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset platform to initial position

step Output current position, velocity,
and orientation axes of platform

Examples Define a platform at origin with a velocity of (100,100,0) in meters per
second. Simulate the motion of the platform for 2 steps, assuming the
time elapsed for each step is 1 second.

Hp = phased.Platform([0; 0; 0],[100; 100; 0]);
T = 1;
[pos,v] = step(Hp,T)
[pos,v] = step(Hp,T)

See Also global2localcoord | local2globalcoordphased.Collector |
phased.Radiator | | rangeangle

Related
Examples

• “Motion Modeling in Phased Array Systems”

3-584

phased.Platform.clone

Purpose Create platform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-585

phased.Platform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-586

phased.Platform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-587

phased.Platform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Platform
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-588

phased.Platform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-589

phased.Platform.reset

Purpose Reset platform to initial position

Syntax reset(H)

Description reset(H) resets the initial position of the Platform object, H.

3-590

phased.Platform.step

Purpose Output current position, velocity, and orientation axes of platform

Syntax [P,V] = step(H,T)
[P,V,AX] = step(H,T)

Description [P,V] = step(H,T) returns the current position, P, and the current
velocity, V, of the platform. The method then updates the position and
velocity using the equation P = P+VT where T specifies the elapsed time
(in seconds) for the current step.

[P,V,AX] = step(H,T) returns the additional output
AX as the platform’s orientation axes when you set the
OrientationAxesOutputPort property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Define a platform at origin with a velocity of [100; 100; 0] in meters per
second. Simulate the motion of the platform for 2 steps, assuming the
time elapsed for each step is 1 second.

Hp = phased.Platform([0; 0; 0],[100; 100; 0]);
T = 1;
[pos,v] = step(Hp,T)
[pos,v] = step(Hp,T)

3-591

phased.RadarTarget

Purpose Radar target

Description The RadarTarget object models a radar target.

To compute the signal reflected from a radar target:

1 Define and set up your radar target. See “Construction” on page
3-592.

2 Call step to compute the reflected signal according to the properties
of phased.RadarTarget. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.RadarTarget creates a radar target System object, H, that
computes the reflected signal from a target.

H = phased.RadarTarget(Name,Value) creates a radar target
object, H, with each specified property set to the specified value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties MeanRCSSource

Source of mean radar cross section

Specify whether the target’s mean RCS value comes from the
MeanRCS property of this object or from an input argument in
step. Values of this property are:

'Property' The MeanRCS property of this object
specifies the mean RCS value.

'Input port' An input argument in each invocation
of step specifies the mean RCS value.

Default: 'Property'

MeanRCS

3-592

phased.RadarTarget

Mean radar cross section

Specify the mean value of the target’s radar cross section (in
square meters) as a nonnegative scalar. This property applies
when the MeanRCSSource property is 'Property'. This property
is tunable.

Default: 1

Model

Target statistical model

Specify the statistical model of the target as one of
'Nonfluctuating', 'Swerling1', 'Swerling2', 'Swerling3',
or 'Swerling4'. If you set this property to a value other than
'Nonfluctuating', you must use the UPDATERCS input argument
when invoking step.

Default: 'Nonfluctuating'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency of the signal you are reflecting from
the target, as a scalar in hertz. The default value of this property
corresponds to 300 MHz.

Default: 3e8

3-593

phased.RadarTarget

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

The random numbers are used to model random RCS values.
This property applies when the Model property is 'Swerling1',
'Swerling2','Swerling3', or 'Swerling4'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

3-594

phased.RadarTarget

Methods clone Create radar target object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of radar target object

step Reflect incoming signal

Examples Calculate the reflected signal from a nonfluctuating point target.

x = ones(10,1);
hr = phased.RadarTarget('Model','Nonfluctuating','MeanRCS',10);
y = step(hr,x);

Algorithms The reflected signal is given by:

Y G X

where:

• X is the incoming signal

• G is the target gain factor, a dimensionless quantity given by

G
4

2

• σ is the mean RCS of the target

3-595

phased.RadarTarget

• λ is the wavelength of the incoming signal

Each element of the signal incident on the target is scaled by the gain
factor.

For further details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also phased.FreeSpace | phased.Platform |

Concepts • “Radar Target”

3-596

phased.RadarTarget.clone

Purpose Create radar target object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-597

phased.RadarTarget.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-598

phased.RadarTarget.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-599

phased.RadarTarget.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the RadarTarget
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-600

phased.RadarTarget.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles,
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-601

phased.RadarTarget.reset

Purpose Reset states of radar target object

Syntax reset(H)

Description reset(H) resets the states of the RadarTarget object, H. This method
resets the random number generator state if the SeedSource property
is applicable and has the value 'Property'.

3-602

phased.RadarTarget.step

Purpose Reflect incoming signal

Syntax Y = step(H,X)
Y = step(H,X,MEANRCS)
Y = step(H,X,UPDATERCS)
Y = step(H,X,MEANRCS,UPDATERCS)

Description Y = step(H,X) returns the reflected signal Y due to the incident
signal X. Use this syntax when you set the Model property of H to
'Nonfluctuating'. In this case, the value of the MeanRCS property
is used as the RCS value.

Y = step(H,X,MEANRCS) uses MEANRCS as the mean RCS value. This
syntax is available when you set the MeanRCSSource property to 'Input
port'. MEANRCS must be a positive scalar.

Y = step(H,X,UPDATERCS) uses UPDATERCS as the indicator of
whether to update the RCS value. This syntax is available when you set
the Model property to 'Swerling1', 'Swerling 2', 'Swerling 3', or
'Swerling 4'. If UPDATERCS is true, a new RCS value is generated. If
UPDATERCS is false, the previous RCS value is used.

You can combine optional input arguments when their enabling
properties are set: Y = step(H,X,MEANRCS,UPDATERCS)

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Reflect a 250-Hz sine wave with unit amplitude off a target with a
nonfluctuating RCS of 2 square meters. The carrier frequency of the
sine wave is 1 GHz.

3-603

phased.RadarTarget.step

htarget = phased.RadarTarget('Model','nonfluctuating',...
'MeanRCS',2,'OperatingFrequency',1e9);

t = linspace(0,1,1000);
sig = cos(2*pi*250*t)';
reflectedsig = step(htarget,sig);

Algorithms The reflected signal is given by:

Y G X

where:

• X is the incoming signal

• G is the target gain factor, a dimensionless quantity given by

G
4

2

• σ is the mean RCS of the target

• λ is the wavelength of the incoming signal

Each element of the signal incident on the target is scaled by the gain
factor.

For further details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

3-604

phased.Radiator

Purpose Narrowband signal radiator

Description The Radiator object implements a narrowband signal radiator.

To compute the radiated signal from the sensor(s):

1 Define and set up your radiator. See “Construction” on page 3-605.

2 Call step to compute the radiated signal according to the properties
of phased.Radiator. The behavior of step is specific to each object
in the toolbox.

Construction H = phased.Radiator creates a narrowband signal radiator System
object, H. The object returns radiated narrowband signals for given
directions using a sensor array or a single element.

H = phased.Radiator(Name,Value) creates a radiator object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Sensor

Handle of sensor

Specify the sensor as a sensor array object or an element object
in the phased package. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-605

phased.Radiator

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

CombineRadiatedSignals

Combine radiated signals

Set this property to true to combine radiated signals from all
radiating elements. Set this property to false to obtain the
radiated signal for each radiating element. If the Sensor property
is an array that contains subarrays, the CombineRadiatedSignals
property must be true.

Default: true

Methods clone Create radiator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

3-606

phased.Radiator

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Radiate signals

Examples Radiate signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hr = phased.Radiator('Sensor',ha,'OperatingFrequency',300e6);
x = [1;1];
radiatingAngle = [30 10]';
y = step(hr,x,radiatingAngle);

Radiate a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hr = phased.Radiator('Sensor',ha,'OperatingFrequency',300e6);
x = [1;1];
radiatingAngle = [30 10; 20 0]'; % two directions
y = step(hr,x,radiatingAngle);

Radiate signal with a 3-element antenna array. Each antenna radiates
a separate signal to a separate direction.

ha = phased.ULA('NumElements',3);
hr = phased.Radiator('Sensor',ha,'OperatingFrequency',1e9,...

'CombineRadiatedSignals',false);
x = [1 2 3;1 2 3];
radiatingAngle = [10 0; 20 5; 45 2]'; % One angle for one antenna
y = step(hr,x,radiatingAngle);

3-607

phased.Radiator

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.Collector |

3-608

phased.Radiator.clone

Purpose Create radiator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-609

phased.Radiator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-610

phased.Radiator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-611

phased.Radiator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Radiator
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-612

phased.Radiator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-613

phased.Radiator.step

Purpose Radiate signals

Syntax Y = step(H,X,ANG)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,WEIGHTS,STEERANGLE)

Description Y = step(H,X,ANG) radiates signal X in the direction ANG. Y
is the radiated signal. The radiating process depends on the
CombineRadiatedSignals property of H, as follows:

• If CombineRadiatedSignals has the value true, each radiating
element or subarray radiates X in all the directions in ANG. Y
combines the outputs of all radiating elements or subarrays. If
the Sensor property of H contains subarrays, the radiating process
distributes the power equally among the elements of each subarray.

• If CombineRadiatedSignals has the value false, each radiating
element radiates X in only one direction in ANG. Each column of Y
contains the output of the corresponding element. The false option is
available when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

3-614

phased.Radiator.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Radiator object.

X

Signals to radiate. X can be either a vector or a matrix.

If X is a vector, that vector is radiated through all radiating
elements or subarrays. The computation does not divide the
signal’s power among elements or subarrays, but rather treats
the X vector the same as a matrix in which each column equals
this vector.

If X is a matrix, the number of columns of X must equal the
number of subarrays if H.Sensor is an array that contains
subarrays, or the number of radiating elements otherwise. Each
column of X is radiated by the corresponding element or subarray.

ANG

Incident directions of signals. ANG is a two-row matrix. Each
column specifies a radiating direction in the form [AzimuthAngle;
ElevationAngle], in degrees.

WEIGHTS

Vector of weights. WEIGHTS is a column vector whose length
equals the number of radiating elements or subarrays.

STEERANGLE

3-615

phased.Radiator.step

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between –180 and 180 degrees, inclusive.
The elevation angle must be between –90 and 90 degrees,
inclusive.

Output
Arguments

Y

Radiated signals. Y is a matrix whose number of columns
equals the number of radiating directions in ANG. Each
column of Y contains the output from all radiating elements or
subarrays. The output is the result of radiating the signal in
all directions in ANG, or one direction in ANG, depending on the
CombineRadiatedSignals property of H.

Examples Radiate a far field signal with a 5-element uniform linear array.

ha = phased.ULA('NumElements',5);
% construct the radiator object
hr = phased.Radiator('Sensor',ha,...

'OperatingFrequency',300e6,'CombineRadiatedSignals',true);
% simple signal to radiate
x = [1;1];
% radiating direction in azimuth and elevation
radiatingAngle = [30; 10];
% use the step method to radiate the signal
y = step(hr,x,radiatingAngle);

3-616

phased.RangeDopplerResponse

Purpose Range-Doppler response

Description The RangeDopplerResponse object calculates the range-Doppler
response of input data.

To compute the range-Doppler response:

1 Define and set up your range-Doppler response calculator. See
“Construction” on page 3-617.

2 Call step to compute the range-Doppler response of the input signal
according to the properties of phased.RangeDopplerResponse. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.RangeDopplerResponse creates a range-Doppler response
System object, H. The object calculates the range-Doppler response of
the input data.

H = phased.RangeDopplerResponse(Name,Value) creates a
range-Doppler response object, H, with additional options specified by
one or more Name,Value pair arguments. Name is a property name,
and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1, ,NameN,ValueN.

Properties RangeMethod

Method of range processing

Specify the method of range processing as 'Matched filter'
or 'Dechirp'.

3-617

phased.RangeDopplerResponse

'Matched filter' Algorithm applies a matched filter to the
incoming signal. This approach is common
with pulsed signals, where the matched
filter is the time reverse of the transmitted
signal.

'Dechirp' Algorithm mixes the incoming signal
with a reference signal. This approach is
common with FMCW signals, where the
reference signal is the transmitted signal.
This approach can also apply to a system
that uses linear FM pulsed signals.

Default: 'Matched filter'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second,
as a scalar. The x data you provide to step or plotResponse must
correspond to sweeps having this slope.

3-618

phased.RangeDopplerResponse

This property applies only when you set the RangeMethod property
to 'Dechirp'.

Default: 1e9

DechirpInput

Whether to dechirp input signal

Set this property to true to have the range-Doppler response
object dechirp the input signal. Set this property to false to
indicate that the input signal is already dechirped and no dechirp
operation is necessary. This property applies only when you set
the RangeMethod property to 'Dechirp'.

Default: false

DecimationFactor

Decimation factor for dechirped signal

Specify the decimation factor for the dechirped signal as a
positive integer. When processing FMCW signals, you can often
decimate the dechirped signal to reduce the requirements on the
analog-to-digital converter.

This property applies only when you set the RangeMethod
property to 'Dechirp' and the DechirpInput property to true.
The default value indicates no decimation.

Default: 1

RangeFFTLengthSource

Source of FFT length in range processing

Specify how the object determines the FFT length in range
processing. Values of this property are:

3-619

phased.RangeDopplerResponse

'Auto' The FFT length equals the number of rows
of the input signal.

'Property' The RangeFFTLength property of this
object specifies the FFT length.

This property applies only when you set the RangeMethod property
to 'Dechirp'.

Default: 'Auto'

RangeFFTLength

FFT length in range processing

Specify the FFT length in the range domain as a positive integer.
This property applies only when you set the RangeMethod
property to 'Dechirp' and the RangeFFTLengthSource property
to 'Property'.

Default: 1024

RangeWindow

Window for range weighting

Specify the window used for range processing using one of
'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser', 'Taylor',
or 'Custom'. If you set this property to 'Taylor', the generated
Taylor window has four nearly constant sidelobes adjacent to
the mainlobe. This property applies only when you set the
RangeMethod property to 'Dechirp'.

Default: 'None'

RangeSidelobeAttenuation

Sidelobe attenuation level for range processing

3-620

phased.RangeDopplerResponse

Specify the sidelobe attenuation level of a Kaiser, Chebyshev, or
Taylor window in range processing as a positive scalar, in decibels.
This property applies only when you set the RangeMethod property
to 'Dechirp' and the RangeWindow property to 'Kaiser',
'Chebyshev', or 'Taylor'.

Default: 30

CustomRangeWindow

User-defined window for range processing

Specify the user-defined window for range processing using
a function handle or a cell array. This property applies only
when you set the RangeMethod property to 'Dechirp' and the
RangeWindow property to 'Custom'.

If CustomRangeWindow is a function handle, the specified function
takes the window length as the input and generates appropriate
window coefficients.

If CustomRangeWindow is a cell array, then the first cell must
be a function handle. The specified function takes the window
length as the first input argument, with other additional input
arguments, if necessary. The function then generates appropriate
window coefficients. The remaining entries in the cell array are
the additional input arguments to the function, if any.

Default: @hamming

DopplerFFTLengthSource

Source of FFT length in Doppler processing

Specify how the object determines the FFT length in Doppler
processing. Values of this property are:

3-621

phased.RangeDopplerResponse

'Auto' The FFT length is equal to the number of
rows of the input signal.

'Property' The DopplerFFTLength property of this
object specifies the FFT length.

This property applies only when you set the RangeMethod property
to 'Dechirp'.

Default: 'Auto'

DopplerFFTLength

FFT length in Doppler processing

Specify the FFT length in Doppler processing as a positive integer.
This property applies only when you set the RangeMethod property
to 'Dechirp' and the DopplerFFTLengthSource property to
'Property'.

Default: 1024

DopplerWindow

Window for Doppler weighting

Specify the window used for Doppler processing using one of
'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser', 'Taylor',
or 'Custom'. If you set this property to 'Taylor', the generated
Taylor window has four nearly constant sidelobes adjacent to
the mainlobe. This property applies only when you set the
RangeMethod property to 'Dechirp'.

Default: 'None'

DopplerSidelobeAttenuation

Sidelobe attenuation level for Doppler processing

3-622

phased.RangeDopplerResponse

Specify the sidelobe attenuation level of a Kaiser, Chebyshev,
or Taylor window in Doppler processing as a positive scalar,
in decibels. This property applies only when you set the
RangeMethod property to 'Dechirp' and the DopplerWindow
property to 'Kaiser', 'Chebyshev', or 'Taylor'.

Default: 30

CustomDopplerWindow

User-defined window for Doppler processing

Specify the user-defined window for Doppler processing using
a function handle or a cell array. This property applies only
when you set the RangeMethod property to 'Dechirp' and the
DopplerWindow property to 'Custom'.

If CustomDopplerWindow is a function handle, the specified
function takes the window length as the input and generates
appropriate window coefficients.

If CustomDopplerWindow is a cell array, then the first cell must
be a function handle. The specified function takes the window
length as the first input argument, with other additional input
arguments, if necessary. The function then generates appropriate
window coefficients. The remaining entries in the cell array are
the additional input arguments to the function, if any.

Default: @hamming

DopplerOutput

Doppler domain output

Specify the Doppler domain output as 'Frequency' or 'Speed'.
The Doppler domain output is the DOP_GRID argument of step.

3-623

phased.RangeDopplerResponse

'Frequency' DOP_GRID is the Doppler shift, in hertz.

'Speed' DOP_GRID is the radial speed corresponding
to the Doppler shift, in meters per second.

Default: 'Frequency'

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency, in hertz, as a scalar. This property
applies only when you set the DopplerOutput property to 'Speed'.
The default value of this property corresponds to 300 MHz.

Default: 3e8

Methods clone Create range-Doppler response
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot range-Doppler response

release Allow property value and input
characteristics changes

step Calculate range-Doppler response

3-624

phased.RangeDopplerResponse

Examples Range-Doppler Response of Pulsed Radar Signal Using
Matched Filter

Load data for a pulsed radar signal. The signal includes three target
returns. Two targets are approximately 2000 m away, while the third
is approximately 3500 m away. In addition, two of the targets are
stationary relative to the radar. The third is moving away from the
radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'DopplerFFTLengthSource','Property',...
'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,...
'SampleRate',RangeDopplerEx_MF_Fs,...
'DopplerOutput','Speed',...
'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = step(hrdresp,...
RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff);

Plot the range-Doppler map.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));
xlabel('Speed (m/s)');
ylabel('Range (m)');
title('Range-Doppler Map');

3-625

phased.RangeDopplerResponse

Range-Doppler Response of FMCW Signal

Load data for an FMCW signal that has not been dechirped. The signal
contains the return from a target about 2200 m away. The signal has a
normalized Doppler frequency of about –0.36 relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'RangeMethod','Dechirp',...
'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
'SampleRate',RangeDopplerEx_Dechirp_Fs,...
'DechirpInput',true,...
'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

3-626

phased.RangeDopplerResponse

Plot the range-Doppler response.

plotResponse(hrdresp,...
RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...
'Unit','db','NormalizeDoppler',true)

Algorithms The RangeDopplerResponse object generates the response as follows:

1 Processes the input signal in the range domain using either a
matched filter or dechirp operation.

2 Processes in the Doppler domain using an FFT.

The decimation algorithm uses a 30th order FIR filter generated by
fir1(30,1/R), where R is the value of the DecimationFactor property.

3-627

phased.RangeDopplerResponse

See Also phased.AngleDopplerResponse | phased.MatchedFilter | dechirp

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

3-628

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

phased.RangeDopplerResponse.clone

Purpose Create range-Doppler response object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-629

phased.RangeDopplerResponse.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-630

phased.RangeDopplerResponse.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-631

phased.RangeDopplerResponse.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RangeDopplerResponse System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-632

phased.RangeDopplerResponse.plotResponse

Purpose Plot range-Doppler response

Syntax plotResponse(H,x)
plotResponse(H,x,xref)
plotResponse(H,x,coeff)
plotResponse(___ ,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,x) plots the range-Doppler response of the input
signal, x, in decibels. This syntax is available when you set the
RangeMethod property to 'Dechirp' and the DechirpInput property to
false.

plotResponse(H,x,xref) plots the range-Doppler response after
performing a dechirp operation on x using the reference signal, xref.
This syntax is available when you set the RangeMethod property to
'Dechirp' and the DechirpInput property to true.

plotResponse(H,x,coeff) plots the range-Doppler response after
performing a matched filter operation on x using the matched filter
coefficients in coeff. This syntax is available when you set the
RangeMethod property to 'Matched filter'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns the handle of the image in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

3-633

phased.RangeDopplerResponse.plotResponse

• In the syntax plotResponse(H,x), each column of the matrix x
represents a dechirped signal from one frequency sweep. The
function assumes all sweeps in x are consecutive.

• In the syntax plotResponse(H,x,xref), each column of the
matrix x represents a signal from one frequency sweep. The
function assumes all sweeps in x are consecutive and have not
been dechirped yet.

• In the syntax plotResponse(H,x,coeff), each column of the
matrix x represents a signal from one pulse. The function
assumes all pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep,
the sweeps alternate between positive and negative slopes.
However, phased.RangeDopplerResponse is designed to
process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use
one of the following approaches:

• Specify a positive SweepSlope property value, with x
corresponding to upsweeps only. In the plot, change the tick
mark labels on the horizontal axis to reflect that the Doppler or
speed values are half of what the plot shows by default.

• Specify a negative SweepSlope property value, with x
corresponding to downsweeps only. In the plot, change the tick
mark labels on the horizontal axis to reflect that the Doppler or
speed values are half of what the plot shows by default.

xref

Reference signal, specified as a column vector having the same
number of rows as x.

coeff

Matched filter coefficients, specified as a column vector.

3-634

phased.RangeDopplerResponse.plotResponse

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

NormalizeDoppler

Set this value to true to normalize the Doppler frequency. Set
this value to false to plot the range-Doppler response without
normalizing the Doppler frequency. This parameter applies when
you set the DopplerOutput property of H to 'Frequency'.

Default: false

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Range-Doppler Response of FMCW Signal

Load data for an FMCW signal that has not been dechirped. The signal
contains the return from a target about 2200 m away. The signal has a
normalized Doppler frequency of about –0.36 relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'RangeMethod','Dechirp',...
'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
'SampleRate',RangeDopplerEx_Dechirp_Fs,...
'DechirpInput',true,...
'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

3-635

phased.RangeDopplerResponse.plotResponse

Plot the range-Doppler response.

plotResponse(hrdresp,...
RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...
'Unit','db','NormalizeDoppler',true)

See Also phased.AngleDopplerResponse.plotResponse |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

3-636

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

phased.RangeDopplerResponse.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-637

phased.RangeDopplerResponse.step

Purpose Calculate range-Doppler response

Syntax [RESP,RNG_GRID,DOP_GRID] = step(H,x)
[RESP,RNG_GRID,DOP_GRID] = step(H,x,xref)
[RESP,RNG_GRID,DOP_GRID] = step(H,x,coeff)

Description [RESP,RNG_GRID,DOP_GRID] = step(H,x) calculates the angle-Doppler
response of the input signal, x. RESP is the complex range-Doppler
response. RNG_GRID and DOP_GRID provide the range samples and
Doppler samples, respectively, at which the range-Doppler response
is evaluated. This syntax is available when you set the RangeMethod
property to 'Dechirp' and the DechirpInput property to false. This
syntax is most commonly used with FMCW signals.

[RESP,RNG_GRID,DOP_GRID] = step(H,x,xref) uses xref as the
reference signal to dechirp x. This syntax is available when you set the
RangeMethod property to 'Dechirp' and the DechirpInput property to
true. This syntax is most commonly used with FMCW signals, where
the reference signal is typically the transmitted signal.

[RESP,RNG_GRID,DOP_GRID] = step(H,x,coeff) uses coeff as the
matched filter coefficients. This syntax is available when you set the
RangeMethod property to 'Matched filter'. This syntax is most
commonly used with pulsed signals, where the matched filter is the
time reverse of the transmitted signal.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-638

phased.RangeDopplerResponse.step

Input
Arguments

H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

• In the syntax step(H,x), each column of the matrix x
represents a dechirped signal from one frequency sweep. The
function assumes all sweeps in x are consecutive.

• In the syntax step(H,x,xref), each column of the matrix x
represents a signal from one frequency sweep. The function
assumes all sweeps in x are consecutive and have not been
dechirped yet.

• In the syntax step(H,x,coeff), each column of the matrix x
represents a signal from one pulse. The function assumes all
pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep,
the sweeps alternate between positive and negative slopes.
However, phased.RangeDopplerResponse is designed to
process consecutive sweeps of the same slope. To apply
phased.RangeDopplerResponse for a triangle-sweep system, use
one of the following approaches:

• Specify a positive SweepSlope property value, with x
corresponding to upsweeps only. After obtaining the Doppler or
speed values, divide them by 2.

• Specify a negative SweepSlope property value, with x
corresponding to downsweeps only. After obtaining the Doppler
or speed values, divide them by 2.

xref

Reference signal, specified as a column vector having the same
number of rows as x.

3-639

phased.RangeDopplerResponse.step

coeff

Matched filter coefficients, specified as a column vector.

Output
Arguments

RESP

Complex range-Doppler response of x, returned as a P-by-Q
matrix. The values of P and Q depend on the syntax.

Syntax Values of P and Q

step(H,x) If you set the RangeFFTLength
property to 'Auto', P is
the number of rows in x.
Otherwise, P is the value of
the RangeFFTLength property.

If you set the
DopplerFFTLength property
to 'Auto', Q is the number of
columns in x. Otherwise,
Q is the value of the
DopplerFFTLength property.

step(H,x,xref) P is the quotient between
the number of rows of
x and the value of the
DecimationFactor property.

If you set the
DopplerFFTLength property
to 'Auto', Q is the number of
columns in x. Otherwise,
Q is the value of the
DopplerFFTLength property.

step(H,x,coeff) P is the number of rows of x.

If you set the
DopplerFFTLength property
to 'Auto', Q is the number of

3-640

phased.RangeDopplerResponse.step

Syntax Values of P and Q

columns in x. Otherwise,
Q is the value of the
DopplerFFTLength property.

RNG_GRID

Range samples at which the range-Doppler response is evaluated.
RNG_GRID is a column vector of length P.

DOP_GRID

Doppler samples or speed samples at which the range-Doppler
response is evaluated. DOP_GRID is a column vector of length Q.
Whether DOP_GRID contains Doppler or speed samples depends
on the DopplerOutput property of H.

Examples Range-Doppler Response of Pulsed Radar Signal Using
Matched Filter

Load data for a pulsed radar signal. The signal includes three target
returns. Two targets are approximately 2000 m away, while the third
is approximately 3500 m away. In addition, two of the targets are
stationary relative to the radar. The third is moving away from the
radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'DopplerFFTLengthSource','Property',...
'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,...
'SampleRate',RangeDopplerEx_MF_Fs,...
'DopplerOutput','Speed',...
'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

3-641

phased.RangeDopplerResponse.step

[resp,rng_grid,dop_grid] = step(hrdresp,...
RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff);

Plot the range-Doppler map.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));
xlabel('Speed (m/s)');
ylabel('Range (m)');
title('Range-Doppler Map');

Estimation of Doppler and Range from Range-Doppler
Response Data

Load data for an FMCW signal that has not been dechirped. The signal
contains the return from one target.

load RangeDopplerExampleData;

3-642

phased.RangeDopplerResponse.step

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
'RangeMethod','Dechirp',...
'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
'SampleRate',RangeDopplerEx_Dechirp_Fs,...
'DechirpInput',true,...
'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Obtain the range-Doppler response data.

[resp,rng_grid,dop_grid] = step(hrdresp,...
RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref);

Estimate the range and Doppler based on the map.

[x_temp,idx_temp] = max(abs(resp));
[~,dop_idx] = max(x_temp);
rng_idx = idx_temp(dop_idx);
dop_est = dop_grid(dop_idx)
rng_est = rng_grid(rng_idx)

dop_est =

-712.8906

rng_est =

2250

The target is approximately 2250 m away, and it is moving fast enough
to cause a Doppler shift of approximately –713 Hz.

3-643

phased.ReceiverPreamp

Purpose Receiver preamp

Description The ReceiverPreamp object implements a receiver preamp.

To model a receiver preamp:

1 Define and set up your receiver preamp. See “Construction” on page
3-644.

2 Call step to amplify the input signal according to the properties of
phased.ReceiverPreamp. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.ReceiverPreamp creates a receiver preamp System object,
H. The object receives the incoming pulses.

H = phased.ReceiverPreamp(Name,Value) creates a receiver preamp
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties Gain

Gain of receiver

A scalar containing the gain (in decibels) of the receiver preamp.

Default: 20

LossFactor

Loss factor of receiver

A scalar containing the loss factor (in decibels) of the receiver
preamp.

Default: 0

NoiseBandwidth

3-644

phased.ReceiverPreamp

Noise bandwidth of receiver

A scalar containing the bandwidth of noise spectrum (in hertz) at
the receiver preamp. If the receiver has multiple channels/sensors,
the noise bandwidth applies to each channel/sensor.

Default: 1e6

NoiseFigure

Noise figure of receiver

A scalar containing the noise figure (in decibels) of the receiver
preamp. If the receiver has multiple channels/sensors, the noise
figure applies to each channel/sensor.

Default: 0

ReferenceTemperature

Reference temperature of receiver

A scalar containing the reference temperature of the receiver
(in kelvin). If the receiver has multiple channels/sensors, the
reference temperature applies to each channel/sensor.

Default: 290

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

EnableInputPort

Add input to specify enabling signal

3-645

phased.ReceiverPreamp

To specify a receiver enabling signal, set this property to true and
use the corresponding input argument when you invoke step.
If you do not want to specify a receiver enabling signal, set this
property to false.

Default: false

PhaseNoiseInputPort

Add input to specify phase noise

To specify the phase noise for each incoming sample, set this
property to true and use the corresponding input argument
when you invoke step. You can use this information to emulate
coherent-on-receive systems. If you do not want to specify phase
noise, set this property to false.

Default: false

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

3-646

phased.ReceiverPreamp

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the SeedSource property to 'Property'.

Default: 0

Methods clone Create receiver preamp object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset random number generator
for noise generation

step Receive incoming signal

Examples Simulate the reception of a sine wave.

Hrx = phased.ReceiverPreamp('NoiseFigure',10);
Fs = 100;
t = linspace(0,1-1/Fs,100);
x = 1e-6*sin(2*pi*5*t);
y = step(Hrx,x);
plot(t,x,t,real(y));

3-647

phased.ReceiverPreamp

xlabel('Time (s)'); ylabel('Amplitude');
legend('Original signal','Received signal');

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

3-648

phased.ReceiverPreamp

See Also phased.Collector | phased.Transmitter |

Concepts • “Receiver Preamp”

3-649

phased.ReceiverPreamp.clone

Purpose Create receiver preamp object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-650

phased.ReceiverPreamp.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-651

phased.ReceiverPreamp.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-652

phased.ReceiverPreamp.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ReceiverPreamp System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-653

phased.ReceiverPreamp.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-654

phased.ReceiverPreamp.reset

Purpose Reset random number generator for noise generation

Syntax reset(H)

Description reset(H) resets the states of the ReceiverPreamp object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'.

3-655

phased.ReceiverPreamp.step

Purpose Receive incoming signal

Syntax Y = step(H,X)
Y = step(H,X,EN_RX)
Y = step(H,X,PHNOISE)
Y = step(H,X,EN_RX,PHNOISE)

Description Y = step(H,X) applies the receiver gain and the receiver noise to the
input signal, X, and returns the resulting output signal, Y.

Y = step(H,X,EN_RX) uses input EN_RX as the enabling signal when
the EnableInputPort property is set to true.

Y = step(H,X,PHNOISE) uses input PHNOISE as the phase noise for
each sample in X when the PhaseNoiseInputPort is set to true. The
phase noise is the same for all channels in X. The elements in PHNOISE
represent the random phases the transmitter adds to the transmitted
pulses. The receiver preamp object removes these random phases from
all received samples returned within corresponding pulse intervals.
Such setup is often referred to as coherent on receive.

Y = step(H,X,EN_RX,PHNOISE) combines all input arguments. This
syntax is available when you configure H so that H.EnableInputPort
is true and H.PhaseNoiseInputPort is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Receiver object.

3-656

phased.ReceiverPreamp.step

X

Input signal.

EN_RX

Enabling signal, specified as a column vector whose length equals
the number of rows in X. The data type of EN_RN is double or
logical. Every element of EN_RX that equals 0 or false indicates
that the receiver is turned off, and no input signal passes through
the receiver. Every element of EN_RX that is nonzero or true
indicates that the receiver is turned on, and the input passes
through.

PHNOISE

Phase noise for each sample in X, specified as a column vector
whose length equals the number of rows in X. You can obtain
PHNOISE as an optional output argument from the step method
of phased.Transmitter.

Output
Arguments

Y

Output signal. Y has the same dimensions as X.

Examples Construct a receiver preamp object with a noise figure of 5 dB and
bandwidth of 1 MHz. Demonstrate the effect of the receiver on a
received sinusoid.

% construct receiver preamp object
hrx = phased.ReceiverPreamp('NoiseFigure',5,'SampleRate',1e6,...

'NoiseBandwidth',1e6);
Fs = 1e3; t = linspace(0,1,1e3);
% signal at the receiver
x = cos(2*pi*200*t)';
% use the step method to obtain the signal demonstrating the
% effect of the receiver
y = step(hrx,x);

3-657

phased.RectangularWaveform

Purpose Rectangular pulse waveform

Description The RectangularWaveform object creates a rectangular pulse waveform.

To obtain waveform samples:

1 Define and set up your rectangular pulse waveform. See
“Construction” on page 3-658.

2 Call step to generate the rectangular pulse waveform samples
according to the properties of phased.RectangularWaveform. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.RectangularWaveform creates a rectangular pulse
waveform System object, H. The object generates samples of a
rectangular pulse.

H = phased.RectangularWaveform(Name,Value) creates a rectangular
pulse waveform object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

3-658

phased.RectangularWaveform

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

3-659

phased.RectangularWaveform

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

Methods bandwidth Bandwidth of rectangular pulse
waveform

clone Create rectangular waveform
object with same property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot rectangular pulse waveform

3-660

phased.RectangularWaveform

release Allow property value and input
characteristics changes

reset Reset states of rectangular
waveform object

step Samples of rectangular pulse
waveform

Examples Create and plot a rectangular pulse waveform object.

hw = phased.RectangularWaveform('PulseWidth',1e-4);
plot(hw);

3-661

phased.RectangularWaveform

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.SteppedFMWaveform |
phased.PhaseCodedWaveform |

Related
Examples

• Waveform Analysis Using the Ambiguity Function

3-662

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.RectangularWaveform.bandwidth

Purpose Bandwidth of rectangular pulse waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for
the rectangular pulse waveform, H. The bandwidth equals the reciprocal
of the pulse width.

Input
Arguments

H

Rectangular pulse waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a rectangular pulse waveform.

H = phased.RectangularWaveform;
bw = bandwidth(H)

3-663

phased.RectangularWaveform.clone

Purpose Create rectangular waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-664

phased.RectangularWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the rectangular waveform object H. Coeff is a column vector.

Examples Get the matched filter coefficients for a rectangular pulse.

hw = phased.RectangularWaveform('PulseWidth',1e-5,...
'OutputFormat','Pulses','NumPulses',1);

Coeff = getMatchedFilter(hw);

3-665

phased.RectangularWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-666

phased.RectangularWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-667

phased.RectangularWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RectangularWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-668

phased.RectangularWaveform.plot

Purpose Plot rectangular pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify
a Type value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PlotType

3-669

phased.RectangularWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot a rectangular pulse waveform.

hw = phased.RectangularWaveform('PulseWidth',1e-4);
plot(hw);

3-670

phased.RectangularWaveform.plot

3-671

phased.RectangularWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-672

phased.RectangularWaveform.reset

Purpose Reset states of rectangular waveform object

Syntax reset(H)

Description reset(H) resets the states of the RectangularWaveform object, H.
Afterward, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

3-673

phased.RectangularWaveform.step

Purpose Samples of rectangular pulse waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the rectangular pulse in a column
vector Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Construct a rectangular pulse 10 microseconds in duration with pulse
repetition interval of 100 microseconds.

hw = phased.RectangularWaveform('PulseWidth',1e-5,...
'OutputFormat','Pulses','NumPulses',1,...
'SampleRate',1e6,'PRF',1e4);

wav = step(hw);

3-674

phased.ReplicatedSubarray

Purpose Phased array formed by replicated subarrays

Description The ReplicatedSubarray object represents a phased array that
contains copies of a subarray.

To obtain the response of the subarrays:

1 Define and set up your phased array containing replicated subarrays.
See “Construction” on page 3-675.

2 Call step to compute the response of the subarrays according to the
properties of phased.ReplicatedSubarray. The behavior of step is
specific to each object in the toolbox.

You can also use a ReplicatedSubarray object as the value of the
SensorArray or Sensor property of objects that perform beamforming,
steering, and other operations.

Construction H = phased.ReplicatedSubarray creates a replicated subarray
System object, H. This object represents an array that contains copies of
a subarray.

H = phased.ReplicatedSubarray(Name,Value) creates a replicated
subarray object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties Subarray

Subarray to replicate

Specify the subarray you use to form the array. The subarray
must be a phased.ULA, phased.URA, or phased.ConformalArray
object.

Default: phased.ULA with default property values

Layout

3-675

phased.ReplicatedSubarray

Layout of subarrays

Specify the layout of the replicated subarrays as 'Rectangular'
or 'Custom'.

Default: 'Rectangular'

GridSize

Size of rectangular grid

Specify the size of the rectangular grid as a scalar or length-2 row
vector. This property applies when you set the Layout property
to 'Rectangular'.

If GridSize is a scalar, the array has the same number of
subarrays in each row and column.

If GridSize is a length-2 row vector, the first entry is the number
of subarrays in each row. The second entry is the number of
subarrays in each column. The row is along the local y-axis, and
the column is along the local z-axis.

Default: [2 1]

GridSpacing

Spacing of rectangular grid

Specify the rectangular grid spacing of the array in meters,
as a scalar, length-2 row vector, or the string value 'Auto'.
This property applies when you set the Layout property to
'Rectangular'.

If GridSpacing is a scalar, the spacing along the row and the
spacing along the column are the same.

If GridSpacing is a length-2 row vector, the first entry specifies
the spacing along the row. The second entry specifies the spacing
along the column.

3-676

phased.ReplicatedSubarray

If GridSpacing is 'Auto', the replication preserves the element
spacing in both row and column. This option is available only if
you use a phased.ULA or phased.URA object as the subarray.

Default: 'Auto'

SubarrayPosition

Subarray positions in custom grid

Specify the positions of the subarrays in the custom grid. This
property value is a 3-by-N matrix, where N indicates the number
of subarrays in the array. Each column of the matrix represents
the position of a single subarray in the array’s local coordinate
system, in meters, using the form [x; y; z].

This property applies when you set the Layout property to
'Custom'.

Default: [0 0; -0.5 0.5; 0 0]

SubarrayNormal

Subarray normal directions in custom grid

Specify the normal directions of the subarrays in the array.
This property value is a 2-by-N matrix, where N is the number
of subarrays in the array. Each column of the matrix specifies
the normal direction of the corresponding subarray, in the form
[azimuth; elevation]. Each angle is in degrees and is defined in
the local coordinate system.

You can use the SubarrayPosition and SubarrayNormal
properties to represent any arrangement in which pairs of
subarrays differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation
about the normal.

3-677

phased.ReplicatedSubarray

This property applies when you set the Layout property to
'Custom'.

Default: [0 0; 0 0]

SubarraySteering

Subarray steering method

Specify the method of steering the subarray as one of 'None' |
'Phase' | 'Time'.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform
subarray steering. The property value is a positive scalar in
hertz. This property applies when you set the SubarraySteering
property to 'Phase'.

Default: 3e8

Methods clone Create replicated subarray with
same property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

getNumSubarrays Number of subarrays in array

3-678

phased.ReplicatedSubarray

getSubarrayPosition Positions of subarrays in array

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of array

release Allow property value and input
characteristics changes

step Output responses of subarrays

viewArray View array geometry

Examples Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two
2-element ULAs.

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[2 1],...
'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the wave propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

3-679

phased.ReplicatedSubarray

Response of Subarrays

Calculate the response at the boresight of two 2-element ULAs that
are subarrays of a 4-element ULA.

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

3-680

phased.ReplicatedSubarray

'Layout','Rectangular','GridSize',[2 1],...
'GridSpacing','Auto');

Find the response of each subarray at the boresight. Assume the
operating frequency is 1 GHz and the wave propagation speed is 3e8
m/s.

RESP = step(ha,1e9,[0;0],3e8);

References [1] Mailloux, Robert J. Electronically Scanned Arrays. San Rafael, CA:
Morgan & Claypool Publishers, 2007.

[2] Mailloux, Robert J. Phased Array Antenna Handbook, 2nd Ed.
Norwood, MA: Artech House, 2005.

See Also phased.ULA | phased.URA | phased.ConformalArray |
phased.PartitionedArray |

Related
Examples

• Subarrays in Phased Array Antennas
• Phased Array Gallery

Concepts • “Subarrays Within Arrays”

3-681

../examples/subarrays-in-phased-array-antennas.html
../examples/phased-array-gallery.html

phased.ReplicatedSubarray.clone

Purpose Create replicated subarray with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-682

phased.ReplicatedSubarray.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

3-683

phased.ReplicatedSubarray.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of subarrays in the array H. Each column of Y is the received
signal at the corresponding subarray, with all incoming signals
combined.

Examples Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA composed of four
4-element ULAs.

Create a 4-element ULA, and replicate it to create a 16-element ULA.

hs = phased.ULA('NumElements',4);
ha = phased.ReplicatedSubarray('Subarray',hs,...

'GridSize',[4 1]);

Simulate receiving signals from 10 degrees and 30 degrees azimuth.
Both signals have an elevation angle of 0 degrees. Assume the
propagation speed is the speed of light and the carrier frequency of the
signal is 100 MHz.

Y = collectPlaneWave(ha,randn(4,2),[10 30],...
1e8,physconst('LightSpeed'));

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in the

3-684

phased.ReplicatedSubarray.collectPlaneWave

array and only models the array factor among subarrays. Therefore, the
result does not depend on whether the subarray is steered.

See Also uv2azel | phitheta2azel

3-685

phased.ReplicatedSubarray.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)

Description POS = getElementPosition(H) returns the element positions in the
array H.

Input
Arguments

H

Array object consisting of replicated subarrays.

Output
Arguments

POS

Element positions in array. POS is a 3-by-N matrix, where N is
the number of elements in H. Each column of POS defines the
position of an element in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Elements in Array with Replicated Subarrays

Create an array with two copies of a 3-element ULA, and obtain the
positions of the elements.

H = phased.ReplicatedSubarray('Subarray',...

phased.ULA('NumElements',3),'GridSize',[1 2]);

POS = getElementPosition(H)

See Also getSubarrayPosition |

3-686

phased.ReplicatedSubarray.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements in the array
object H. This number includes the elements in all subarrays of the
array.

Input
Arguments

H

Array object consisting of replicated subarrays.

Examples Number of Elements in Array with ReplicatedSubarrays

Create an array with two copies of a 3-element ULA, and obtain the
total number of elements.

H = phased.ReplicatedSubarray('Subarray',...
phased.ULA('NumElements',3),'GridSize',[1 2]);

N = getNumElements(H);

See Also getNumSubarrays |

3-687

phased.ReplicatedSubarray.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-688

phased.ReplicatedSubarray.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-689

phased.ReplicatedSubarray.getNumSubarrays

Purpose Number of subarrays in array

Syntax N = getNumSubarrays(H)

Description N = getNumSubarrays(H) returns the number of subarrays in the
array object H.

Input
Arguments

H

Array object consisting of replicated subarrays.

Examples Number of Subarrays in Array

Create an array by tiling copies of a ULA in a 2-by-5 grid. Obtain the
number of subarrays.

H = phased.ReplicatedSubarray('Subarray',...
phased.ULA('NumElements',3),'GridSize',[2 5]);

N = getNumSubarrays(H);

See Also getNumElements |

3-690

phased.ReplicatedSubarray.getSubarrayPosition

Purpose Positions of subarrays in array

Syntax POS = getSubarrayPosition(H)

Description POS = getSubarrayPosition(H) returns the subarray positions in
the array H.

Input
Arguments

H

Partitioned array object.

Output
Arguments

POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is
the number of subarrays in H. Each column of POS defines the
position of a subarray in the local coordinate system, in meters,
using the form [x; y; z].

Examples Positions of Replicated Subarrays in Array

Create an array with two copies of a 3-element ULA, and obtain the
positions of the subarrays.

H = phased.ReplicatedSubarray('Subarray',...

phased.ULA('NumElements',3),'GridSize',[1 2]);

POS = getSubarrayPosition(H)

See Also getElementPosition |

3-691

phased.ReplicatedSubarray.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
ReplicatedSubarray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-692

phased.ReplicatedSubarray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the range
specified by a property of H.Subarray.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-693

phased.ReplicatedSubarray.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

3-694

phased.ReplicatedSubarray.plotResponse

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

SteerAng

Subarray steering angle. SteerAng can be either a 2-element
column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this
case, the elevation angle is assumed to be 0.

This option is applicable only if the SubarraySteering property
of H is 'Phase' or 'Time'.

Default: [0;0]

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Weights

Weights applied to the array, specified as a length-N column
vector or N-by-M matrix. N is the number of subarrays in the
array. M is the number of frequencies in FREQ. If Weights is a
vector, the function applies the same weights to each frequency. If

3-695

phased.ReplicatedSubarray.plotResponse

Weights is a matrix, the function applies each column of weight
values to the corresponding frequency in FREQ.

Examples Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two
2-element ULAs.

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[2 1],...
'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency
is 1 GHz and the wave propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

3-696

phased.ReplicatedSubarray.plotResponse

See Also uv2azel | azel2uv

3-697

phased.ReplicatedSubarray.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-698

phased.ReplicatedSubarray.step

Purpose Output responses of subarrays

Syntax RESP = step(H,FREQ,ANG,V)
RESP = step(H,FREQ,ANG,V,STEERANGLE)

Description RESP = step(H,FREQ,ANG,V) returns the responses RESP of the
subarrays in the array, at operating frequencies specified in FREQ and
directions specified in ANG. V is the propagation speed. The elements
within each subarray are connected to the subarray phase center using
an equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the
subarray’s steering direction. This syntax is available when you set the
SubarraySteering property to either 'Phase' or 'Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Phased array formed by replicated subarrays.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by
a property of H.Subarray.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at
frequencies outside that range.

ANG

3-699

phased.ReplicatedSubarray.step

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a
scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a
2-element column vector or a scalar.

If STEERANGLE is a 2-element column vector, it has the form
[azimuth; elevation]. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth
angle. In this case, the elevation angle is assumed to be 0.

Output
Arguments

RESP

Responses of subarrays of array. RESP has dimensions
N-by-M-by-L. N is the number of subarrays in the phased array.
Each column of RESP contains the responses of the subarrays
for the corresponding direction specified in ANG. Each of the L
pages of RESP contains the responses of the subarrays for the
corresponding frequency specified in FREQ.

3-700

phased.ReplicatedSubarray.step

Examples Response of Subarrays

Calculate the response at the boresight of two 2-element ULAs that
are subarrays of a 4-element ULA.

Create a 2-element ULA, and arrange two copies to form a 4-element
ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...

'Layout','Rectangular','GridSize',[2 1],...
'GridSpacing','Auto');

Find the response of each subarray at the boresight. Assume the
operating frequency is 1 GHz and the wave propagation speed is 3e8
m/s.

RESP = step(ha,1e9,[0;0],3e8);

See Also uv2azel | phitheta2azel

3-701

phased.ReplicatedSubarray.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handles of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

3-702

phased.ReplicatedSubarray.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

ShowSubarray

Vector specifying the indices of subarrays to highlight in the
figure. Each number in the vector must be an integer between
1 and the number of subarrays. You can also specify the string
'All' to highlight all subarrays of the array or 'None' to suppress
the subarray highlighting. The highlighting uses different colors
for different subarrays.

Default: 'All'

Title

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handles of array elements in figure window.

Examples Array of Replicated Hexagonal Arrays on a Sphere

Create a hexagonal array to use as a subarray.

Nmin = 9; Nmax = 17;
dy = 0.5;
dz = 0.5*sin(pi/3);
rowlengths = [Nmin:Nmax Nmax-1:-1:Nmin];
numels_hex = sum(rowlengths);
stopvals = cumsum(rowlengths);
startvals = stopvals-rowlengths+1;
pos = zeros(3,numels_hex);

3-703

phased.ReplicatedSubarray.viewArray

rowidx = 0;
for m = Nmin-Nmax:Nmax-Nmin

rowidx = rowidx+1;
idx = startvals(rowidx):stopvals(rowidx);
pos(2,idx) = (-(rowlengths(rowidx)-1)/2:...

(rowlengths(rowidx)-1)/2) * dy;
pos(3,idx) = m * dz;

end
hexa = phased.ConformalArray('ElementPosition',pos,...

'ElementNormal',zeros(2,numels_hex));

Arrange copies of the hexagonal array on a sphere.

radius = 9;
az = [-180 -180 -180 -120 -120 -60 -60 0 0 60 60 120 120 180];
el = [-90 -30 30 -30 30 -30 30 -30 30 -30 30 -30 30 90];
numsubarrays = size(az,2);
[x,y,z] = sph2cart(degtorad(az),degtorad(el),...

radius*ones(1,numsubarrays));
ha = phased.ReplicatedSubarray('Subarray',hexa,...

'Layout','Custom',...
'SubarrayPosition',[x; y; z], ...
'SubarrayNormal',[az; el]);

Display the geometry of the array, highlighting selected subarrays with
different colors.

viewArray(ha,'ShowSubarray',3:2:13,...
'Title','Hexagonal Subarrays on a Sphere');

view(0,90)

3-704

phased.ReplicatedSubarray.viewArray

See Also phased.ArrayResponse |

Related
Examples

• Phased Array Gallery

3-705

../examples/phased-array-gallery.html

phased.RootMUSICEstimator

Purpose Root MUSIC direction of arrival (DOA) estimator

Description The RootMUSICEstimator object implements a root multiple signal
classification (MUSIC) direction of arrival estimate for a uniform linear
array.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
3-706.

2 Call step to estimate the DOA according to the properties of
phased.RootMUSICEstimator. The behavior of step is specific to
each object in the toolbox.

Construction H = phased.RootMUSICEstimator creates a root MUSIC DOA
estimator System object, H. The object estimates the signal’s direction
of arrival using the root MUSIC algorithm with a uniform linear array
(ULA).

H = phased.RootMUSICEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-706

phased.RootMUSICEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M–2, where M is the number of sensors.
The default value indicates no spatial smoothing.

Default: 0

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the

3-707

phased.RootMUSICEstimator

number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion and
'MDL' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

Default: 1

Methods clone Create root MUSIC DOA
estimator object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

3-708

phased.RootMUSICEstimator

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootMUSICEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2azphased.RootWSFEstimator |

3-709

phased.RootMUSICEstimator.clone

Purpose Create root MUSIC DOA estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-710

phased.RootMUSICEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-711

phased.RootMUSICEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-712

phased.RootMUSICEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RootMUSICEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-713

phased.RootMUSICEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-714

phased.RootMUSICEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootMUSICEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

3-715

phased.RootWSFEstimator

Purpose Root WSF direction of arrival (DOA) estimator

Description The RootWSFEstimator object implements a root weighted subspace
fitting direction of arrival algorithm.

To estimate the direction of arrival (DOA):

1 Define and set up your root WSF DOA estimator. See “Construction”
on page 3-716.

2 Call step to estimate the DOA according to the properties of
phased.RootWSFEstimator. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.RootWSFEstimator creates a root WSF DOA estimator
System object, H. The object estimates the signal’s direction of arrival
using the root weighted subspace fitting (WSF) algorithm with a
uniform linear array (ULA).

H = phased.RootWSFEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-716

phased.RootWSFEstimator

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto'
or 'Property'. If you set this property to 'Auto', the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of
'AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion
and 'MDL' uses the Minimum Description Length Criterion. This
property applies when you set the NumSignalsSource property
to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property'.

3-717

phased.RootWSFEstimator

Default: 1

Method

Iterative method

Specify the iterative method as one of 'IMODE' or 'IQML'.

Default: 'IMODE'

MaximumIterationCount

Maximum number of iterations

Specify the maximum number of iterations as a positive integer
scalar or 'Inf'. This property is tunable.

Default: 'Inf'

Methods clone Create root WSF DOA estimator
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform DOA estimation

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth

3-718

phased.RootWSFEstimator

and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootWSFEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2azphased.RootMUSICEstimator |

3-719

phased.RootWSFEstimator.clone

Purpose Create root WSF DOA estimator object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-720

phased.RootWSFEstimator.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-721

phased.RootWSFEstimator.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-722

phased.RootWSFEstimator.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
RootWSFEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-723

phased.RootWSFEstimator.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-724

phased.RootWSFEstimator.step

Purpose Perform DOA estimation

Syntax ANG = step(H,X)

Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator
H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 m. The antenna operating frequency is 150
MHz. The actual direction of the first signal is 10 degrees in azimuth
and 20 degrees in elevation. The direction of the second signal is 45
degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).';
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA('NumElements',10,'ElementSpacing',1);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
hdoa = phased.RootWSFEstimator('SensorArray',ha,...

'OperatingFrequency',fc,...
'NumSignalsSource','Property','NumSignals',2);

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

3-725

phased.STAPSMIBeamformer

Purpose Sample matrix inversion (SMI) beamformer

Description The SMIBeamformer object implements a sample matrix inversion
space-time adaptive beamformer. The beamformer works on the
space-time covariance matrix.

To compute the space-time beamformed signal:

1 Define and set up your SMI beamformer. See “Construction” on
page 3-726.

2 Call step to execute the SMI beamformer algorithm according to the
properties of phased.STAPSMIBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.STAPSMIBeamformer creates a sample matrix inversion
(SMI) beamformer System object, H. The object performs the SMI
space-time adaptive processing (STAP) on the input data.

H = phased.STAPSMIBeamformer(Name,Value) creates an SMI object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-726

phased.STAPSMIBeamformer

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of targeting direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
targeting direction.

'Input port' An input argument in each invocation of step specifies
the targeting direction.

Default: 'Property'

Direction

Targeting direction

3-727

phased.STAPSMIBeamformer

Specify the targeting direction of the SMI processor as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). Azimuth angle
should be between –180 and 180. Elevation angle should be
between –90 and 90. This property applies when you set the
DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the
Doppler.

'Input port' An input argument in each invocation of step specifies
the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property'.

Default: 0

WeightsOutputPort

Output processing weights

3-728

phased.STAPSMIBeamformer

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an
even integer. Whenever possible, the training cells are equally
divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

Methods clone Create space-time adaptive SMI
beamformer object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

3-729

phased.STAPSMIBeamformer

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform SMI STAP processing on
input data

Examples Process the data cube using an SMI processor. The weights are
calculated for the 71st cell of a collected data cube pointing to the
direction of [45; –35] degrees and the Doppler of 12980 Hz.

load STAPExampleData; % load data
Hs = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[45; -35],12980);
Hresp = phased.AngleDopplerResponse(...

'SensorArray',Hs.SensorArray,...
'OperatingFrequency',Hs.OperatingFrequency,...
'PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

3-730

phased.STAPSMIBeamformer

Algorithms The optimum beamformer weights are

w kR v 1

where:

• k is a scalar

• R represents the space-time covariance matrix

• v indicates the space-time steering vector

3-731

phased.STAPSMIBeamformer

Because the space-time covariance matrix is unknown, you must
estimate that matrix from the data. The sample matrix inversion (SMI)
algorithm estimates the covariance matrix by designating a number of
range gates to be training cells. Because you use the training cells to
estimate the interference covariance, these cells should not contain
target returns. To prevent target returns from contaminating the
estimate of the interference covariance, you can specify insertion of a
number of guard cells before and after the designated target cell.

To use the general algorithm for estimating the space-time covariance
matrix:

1 Assume you have a M-by-N-by-K matrix. M represents the number
of slow-time samples, and N is the number of array sensors. K is
the number of training cells (range gates for training). Also assume
that the number of training cells is an even integer and that you can
designate K/2 training cells before and after the target range gate
excluding the guard cells. Reshape the M-by-N-by-K matrix into a
MN-by-K matrix by letting X denote the MN-by-K matrix.

2 Estimate the space-time covariance matrix as

1
K

XX H

3 Invert the space-time covariance matrix estimate.

4 Obtain the beamforming weights by multiplying the sample
space-time covariance matrix inverse by the space-time steering
vector.

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

3-732

phased.STAPSMIBeamformer

See Also phased.ADPCACanceller | phased.AngleDopplerResponse |
phased.DPCACanceller | uv2azel | phitheta2azel

3-733

phased.STAPSMIBeamformer.clone

Purpose Create space-time adaptive SMI beamformer object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-734

phased.STAPSMIBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-735

phased.STAPSMIBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-736

phased.STAPSMIBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
STAPSMIBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-737

phased.STAPSMIBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-738

phased.STAPSMIBeamformer.step

Purpose Perform SMI STAP processing on input data

Syntax Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(H,X,CUTIDX,DOP)
[Y,W] = step(___)

Description Y = step(H,X,CUTIDX) applies SMI processing to the input data, X. X
must be a 3-dimensional M-by-N-by-P numeric array whose dimensions
are (range, channels, pulses). The processing weights are calculated
according to the range cell specified by CUTIDX. The targeting direction
and the targeting Doppler are specified by Direction and Doppler
properties, respectively. Y is a column vector of length M. This syntax is
available when the DirectionSource property is 'Property' and the
DopplerSource property is 'Property'.

Y = step(H,X,CUTIDX,ANG) uses ANG as the targeting direction. This
syntax is available when the DirectionSource property is 'Input
port'. ANG must be a 2-by-1 vector in the form of [AzimuthAngle;
ElevationAngle] (in degrees). The azimuth angle must be between
–180 and 180. The elevation angle must be between –90 and 90.

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler
frequency (in hertz). This syntax is available when the DopplerSource
property is 'Input port'. DOP must be a scalar.

You can combine optional input arguments when their enabling
properties are set: Y = step(H,X,CUTIDX,ANG,DOP)

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true. W is a column vector of length N*P.

3-739

phased.STAPSMIBeamformer.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Process the data cube using an SMI processor. The weights are
calculated for the 71st cell of a collected data cube pointing to the
direction of [45; –35] degrees and the Doppler of 12980 Hz.

load STAPExampleData; % load data
Hs = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray,...

'PRF',STAPEx_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource','Input port',...
'DopplerSource','Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[45; -35],12980);

See Also uv2azel | phitheta2azel

3-740

phased.SteeringVector

Purpose Sensor array steering vector

Description The SteeringVector object calculates the steering vector for a sensor
array.

To compute the steering vector of the array for specified directions:

1 Define and set up your steering vector calculator. See “Construction”
on page 3-741.

2 Call step to compute the steering vector according to the properties
of phased.SteeringVector. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.SteeringVector creates a steering vector System object,
H. The object calculates the steering vector of the given sensor array
for the specified directions.

H = phased.SteeringVector(Name,Value) creates a steering vector
object, H, with each specified property Name set to the specified Value.
You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array used to calculate steering vector

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-741

phased.SteeringVector

Default: Speed of light

IncludeElementResponse

Include individual element response in the steering vector

If this property is true, the steering vector includes the individual
element responses.

If this property is false, the computation of the steering vector
assumes the elements are isotropic. The steering vector does not
include the individual element responses. Furthermore, if the
SensorArray property contains subarrays, the steering vector is
the array factor among the subarrays. If SensorArray does not
contain subarrays, the steering vector is the array factor among
the array elements.

Default: false

Methods clone Create steering vector object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Calculate steering vector

3-742

phased.SteeringVector

Examples Steering Vector for Uniform Linear Array

Calculate the steering vector for a uniform linear array at the direction
of 30 degrees azimuth and 20 degrees elevation. Assume the array’s
operating frequency is 300 MHz.

hULA = phased.ULA('NumElements',2);
hsv = phased.SteeringVector('SensorArray',hULA);
Fc = 3e8;
ANG = [30; 20];
sv = step(hsv,Fc,ANG);

Beam Pattern Before and After Steering

Plot the beam pattern for a uniform linear array before and after
steering.

Calculate the steering vector for a 4-element uniform linear array at
the direction of 30 degrees azimuth and 20 degrees elevation. Assume
the array’s operating frequency is 300 MHz.

ha = phased.ULA('NumElements',4);
hsv = phased.SteeringVector('SensorArray',ha);
sv = step(hsv,3e8,[30; 20]);

Compare the beam pattern before and after the steering.

c = hsv.PropagationSpeed;
subplot(211)
plotResponse(ha,3e8,c,'RespCut','Az');
title('Before steering');
subplot(212)
plotResponse(ha,3e8,c,'RespCut','Az','Weights',sv);
title('After steering');

3-743

phased.SteeringVector

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ArrayResponse | phased.ElementDelay
|

3-744

phased.SteeringVector.clone

Purpose Create steering vector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-745

phased.SteeringVector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-746

phased.SteeringVector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-747

phased.SteeringVector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SteeringVector System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-748

phased.SteeringVector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-749

phased.SteeringVector.step

Purpose Calculate steering vector

Syntax SV = step(H,FREQ,ANG)
SV = step(H,FREQ,ANG,STEERANGLE)

Description SV = step(H,FREQ,ANG) returns the steering vector SV of the array for
the directions specified in ANG. The operating frequencies are specified
in FREQ. The meaning of SV depends on the IncludeElementResponse
property of H, as follows:

• If IncludeElementResponse is true, SV includes the individual
element responses.

• If IncludeElementResponse is false, the computation assumes
the elements are isotropic and SV does not include the individual
element responses. Furthermore, if the SensorArray property of
H contains subarrays, SV is the array factor among the subarrays
and the phase center of each subarray is at its geometric center.
If SensorArray does not contain subarrays, SV is the array factor
among the elements.

SV = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the
subarray steering angle. This syntax is available when you
configure H so that H.Sensor is an array that contains subarrays,
H.Sensor.SubarraySteering is either 'Phase' or 'Time', and
H.IncludeElementResponse is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-750

phased.SteeringVector.step

Input
Arguments

H

Steering vector object.

FREQ

Operating frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies
the direction in space in the form [azimuth; elevation]. The
azimuth angle must be between –180 and 180 degrees, and the
elevation angle must be between –90 and 90 degrees.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180
degrees, and the elevation angle must be between –90 and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output
Arguments

SV

Steering vector. SV has dimensions N-by-M-by-L. N is the number
of subarrays in the phased array if H.SensorArray contains
subarrays, or the number of elements otherwise. Each column of
SV contains the steering vector of the array for the corresponding
direction specified in ANG. Each of the L pages of SV contains the

3-751

phased.SteeringVector.step

steering vectors of the array for the corresponding frequency
specified in FREQ.

Examples Steering Vector for Uniform Linear Array

Calculate the steering vector for a uniform linear array at the direction
of 30 degrees azimuth and 20 degrees elevation. Assume the array’s
operating frequency is 300 MHz.

hULA = phased.ULA('NumElements',2);
hsv = phased.SteeringVector('SensorArray',hULA);
Fc = 3e8;
ANG = [30; 20];
sv = step(hsv,Fc,ANG);

See Also uv2azel | phitheta2azel

3-752

phased.SteppedFMWaveform

Purpose Stepped FM pulse waveform

Description The SteppedFMWaveform object creates a stepped FM pulse waveform.

To obtain waveform samples:

1 Define and set up your stepped FM pulse waveform. See
“Construction” on page 3-753.

2 Call step to generate the stepped FM pulse waveform samples
according to the properties of phased.SteppedFMWaveform. The
behavior of step is specific to each object in the toolbox.

Construction H = phased.SteppedFMWaveform creates a stepped FM pulse waveform
System object, H. The object generates samples of a linearly stepped
FM pulse waveform.

H = phased.SteppedFMWaveform(Name,Value) creates a stepped FM
pulse waveform object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

3-753

phased.SteppedFMWaveform

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

FrequencyStep

Linear frequency step size

Specify the linear frequency step size (in hertz) as a positive
scalar. The default value of this property corresponds to 20 kHz.

Default: 2e4

NumSteps

Specify the number of frequency steps as a positive integer. When
NumSteps is 1, the stepped FM waveform reduces to a rectangular
waveform.

Default: 5

3-754

phased.SteppedFMWaveform

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Pulses'
or 'Samples'. When you set the OutputFormat property to
'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses'.

Default: 1

3-755

phased.SteppedFMWaveform

Methods bandwidth Bandwidth of stepped FM pulse
waveform

clone Create stepped FM pulse
waveform object with same
property values

getMatchedFilter Matched filter coefficients for
waveform

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plot Plot stepped FM pulse waveform

release Allow property value and input
characteristics changes

reset Reset state of stepped FM pulse
waveform object

step Samples of stepped FM pulse
waveform

Definitions Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain
bandwidth. Each pulse in this group occupies a given center frequency
and these center frequencies are uniformly located within the total
bandwidth.

Examples Create a stepped frequency pulse waveform object, and plot the third
pulse.

hw = phased.SteppedFMWaveform('NumSteps',3,'FrequencyStep',2e4);

3-756

phased.SteppedFMWaveform

plot(hw,'PulseIdx',3);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.RectangularWaveform |
phased.PhaseCodedWaveform |

3-757

phased.SteppedFMWaveform

Related
Examples

• Waveform Analysis Using the Ambiguity Function

3-758

../examples/waveform-analysis-using-the-ambiguity-function.html

phased.SteppedFMWaveform.bandwidth

Purpose Bandwidth of stepped FM pulse waveform

Syntax BW = bandwidth(H)

Description BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for
the stepped FM pulse waveform H. If there are N frequency steps, the
bandwidth equals N times the value of the FrequencyStep property.
If there is no frequency stepping, the bandwidth equals the reciprocal
of the pulse width.

Input
Arguments

H

Stepped FM pulse waveform object.

Output
Arguments

BW

Bandwidth of the pulses, in hertz.

Examples Determine the bandwidth of a stepped FM waveform.

H = phased.SteppedFMWaveform;
bw = bandwidth(H)

3-759

phased.SteppedFMWaveform.clone

Purpose Create stepped FM pulse waveform object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-760

phased.SteppedFMWaveform.getMatchedFilter

Purpose Matched filter coefficients for waveform

Syntax Coeff = getMatchedFilter(H)

Description Coeff = getMatchedFilter(H) returns the matched filter coefficients
for the stepped FM waveform object H. Coeff is a matrix whose
columns correspond to the different frequency pulses in the stepped
FM waveform.

Examples Get the matched filter coefficients for a stepped FM pulse waveform.

hw = phased.SteppedFMWaveform(...
'NumSteps',3,'FrequencyStep',2e4,...
'OutputFormat','Pulses','NumPulses',3);

coeff = getMatchedFilter(hw);

3-761

phased.SteppedFMWaveform.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-762

phased.SteppedFMWaveform.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-763

phased.SteppedFMWaveform.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SteppedFMWaveform System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-764

phased.SteppedFMWaveform.plot

Purpose Plot stepped FM pulse waveform

Syntax plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot(___)

Description plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options
specified by one or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line
style, or marker options as are available in the MATLAB plot function.

h = plot(___) returns the line handle in the figure.

Input
Arguments

Hwav

Waveform object. This variable must be a scalar that represents a
single waveform object.

LineSpec

String that specifies the same line color, style, or marker options
as are available in the MATLAB plot function. If you specify
a Type value of 'complex', then LineSpec applies to both the
real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

PlotType

3-765

phased.SteppedFMWaveform.plot

Specifies whether the function plots the real part, imaginary part,
or both parts of the waveform. Valid values are 'real', 'imag',
and 'complex'.

Default: 'real'

PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

Output
Arguments

h

Handle to the line or lines in the figure. For a PlotType value of
'complex', h is a column vector. The first and second elements of
this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples Create and plot a stepped frequency pulse waveform.

hw = phased.SteppedFMWaveform;
plot(hw);

3-766

phased.SteppedFMWaveform.plot

3-767

phased.SteppedFMWaveform.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-768

phased.SteppedFMWaveform.reset

Purpose Reset state of stepped FM pulse waveform object

Syntax reset(H)

Description reset(H) resets the states of the SteppedFMWaveform object, H.
Afterward, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

3-769

phased.SteppedFMWaveform.step

Purpose Samples of stepped FM pulse waveform

Syntax Y = step(H)

Description Y = step(H) returns samples of the stepped FM pulses in a column
vector, Y. The output, Y, results from increasing the frequency of
the preceding output by an amount specified by the FrequencyStep
property. If the total frequency increase is larger than the value
specified by the SweepBandwidth property, the samples of a rectangular
pulse are returned.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Definitions Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain
bandwidth. Each pulse in this group occupies a given center frequency
and these center frequencies are uniformly located within the total
bandwidth.

Examples Create a stepped frequency pulse waveform object with a frequency step
of 20 kHz and three frequency steps.

hw = phased.SteppedFMWaveform(...
'NumSteps',3,'FrequencyStep',2e4,...
'OutputFormat','Pulses','NumPulses',1);

% Use the step method to obtain the pulses.
% Pulse 1
pulse1 = step(hw);

3-770

phased.SteppedFMWaveform.step

% Pulse 2 incremented by the frequency step 20 kHz
pulse2 = step(hw);
% Pulse 3 incremented by the frequency step 20 kHz
pulse3 = step(hw);

3-771

phased.StretchProcessor

Purpose Stretch processor for linear FM waveform

Description The StretchProcessor object performs stretch processing on data from
a linear FM waveform.

To perform stretch processing:

1 Define and set up your stretch processor. See “Construction” on
page 3-772.

2 Call step to perform stretch processing on input data according to
the properties of phased.StretchProcessor. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.StretchProcessor creates a stretch processor System
object, H. The object performs stretch processing on data from a linear
FM waveform.

H = phased.StretchProcessor(Name,Value) creates a stretch
processor object, H, with additional options specified by one or more
Name,Value pair arguments. Name is a property name, and Value is
the corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Properties SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The quantity
(SampleRate ./ PRF) is a scalar or vector that must contain only
integers. The default value of this property corresponds to 1 MHz.

Default: 1e6

PulseWidth

Pulse width

3-772

phased.StretchProcessor

Specify the length of each pulse (in seconds) as a positive scalar.
The value must satisfy PulseWidth <= 1./PRF.

Default: 50e-6

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (in hertz) as a scalar or a
row vector. The default value of this property corresponds to 10
kHz.

To implement a constant PRF, specify PRF as a positive scalar.
To implement a staggered PRF, specify PRF as a row vector with
positive elements. When PRF is a vector, the output pulses use
successive elements of the vector as the PRF. If the last element
of the vector is reached, the process continues cyclically with the
first element of the vector.

The value of this property must satisfy these constraints:

• PRF is less than or equal to (1/PulseWidth).

• (SampleRate ./ PRF) is a scalar or vector that contains only
integers.

Default: 1e4

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second,
as a scalar.

Default: 2e9

SweepInterval

Location of FM sweep interval

3-773

phased.StretchProcessor

Specify the linear FM sweeping interval using the value
'Positive' or 'Symmetric'. If SweepInterval is 'Positive',
the waveform sweeps in the interval between 0 and B, where B is
the sweeping bandwidth. If SweepInterval is 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

ReferenceRange

Reference range of stretch processing

Specify the center of ranges of interest, in meters, as a positive
scalar. The reference range must be within the unambiguous
range of one pulse. This property is tunable.

Default: 5000

RangeSpan

Span of ranges of interest

Specify the length of the interval for ranges of interest, in meters,
as a positive scalar. The range span is centered at the range value
specified in the ReferenceRange property.

Default: 500

3-774

phased.StretchProcessor

Methods clone Create stretch processor with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform stretch processing for
linear FM waveform

Examples Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;
x = step(hwav);
c = 3e8; r = 4950;
num_sample = r/(c/(2*hwav.SampleRate));
x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);
y = step(hs,x);

Plot the spectrum of the resulting signal.

hp = spectrum.periodogram;
hpsd = psd(hp,y,'Fs',hs.SampleRate,'NFFT',2048,...

'CenterDC',true);

3-775

phased.StretchProcessor

plot(hpsd);

Detect the range.

[~,rngidx] = findpeaks(pow2db(hpsd.Data/max(hpsd.Data)),...
'MinPeakHeight',-5);

rngfreq = hpsd.Frequencies(rngidx);
re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

hs.ReferenceRange,c);

3-776

phased.StretchProcessor

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.MatchedFilter |
stretchfreq2rng

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

3-777

../examples/range-estimation-using-stretch-processing.html

phased.StretchProcessor.clone

Purpose Create stretch processor with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-778

phased.StretchProcessor.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-779

phased.StretchProcessor.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-780

phased.StretchProcessor.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
StretchProcessor System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-781

phased.StretchProcessor.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-782

phased.StretchProcessor.step

Purpose Perform stretch processing for linear FM waveform

Syntax Y = step(H,X)

Description Y = step(H,X) applies stretch processing along the first dimension of
X. Each column of X represents one receiving pulse.

Input
Arguments

H

Stretch processor object.

X

Input signal. Each column represents one receiving pulse.

Output
Arguments

Y

Result of stretch processing. The dimensions of Y match the
dimensions of X.

Examples Detection of Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Simulate the signal.

hwav = phased.LinearFMWaveform;
x = step(hwav);
c = 3e8; r = 4950;
num_sample = r/(c/(2*hwav.SampleRate));
x = circshift(x,num_sample);

Perform stretch processing.

hs = getStretchProcessor(hwav,5000,200,c);
y = step(hs,x);

Plot the spectrum of the resulting signal.

hp = spectrum.periodogram;

3-783

phased.StretchProcessor.step

hpsd = psd(hp,y,'Fs',hs.SampleRate,'NFFT',2048,...
'CenterDC',true);

plot(hpsd);

Detect the range.

[~,rngidx] = findpeaks(pow2db(hpsd.Data/max(hpsd.Data)),...
'MinPeakHeight',-5);

rngfreq = hpsd.Frequencies(rngidx);
re = stretchfreq2rng(rngfreq,hs.SweepSlope,...

3-784

phased.StretchProcessor.step

hs.ReferenceRange,c);

See Also stretchfreq2rng

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

3-785

../examples/range-estimation-using-stretch-processing.html

phased.SubbandPhaseShiftBeamformer

Purpose Subband phase shift beamformer

Description The SubbandPhaseShiftBeamformer object implements a subband
phase shift beamformer.

To compute the beamformed signal:

1 Define and set up your subband phase shift beamformer. See
“Construction” on page 3-786.

2 Call step to perform the beamforming operation according to the
properties of phased.SubbandPhaseShiftBeamformer. The behavior
of step is specific to each object in the toolbox.

Construction H = phased.SubbandPhaseShiftBeamformer creates a subband phase
shift beamformer System object, H. The object performs subband phase
shift beamforming on the received signal.

H = phased.SubbandPhaseShiftBeamformer(Name,Value) creates a
subband phase shift beamformer object, H, with each specified property
Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-786

phased.SubbandPhaseShiftBeamformer

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a
scalar. The default value of this property corresponds to 300 MHz.

Default: 3e8

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

NumSubbands

Number of subbands

Specify the number of subbands used in the subband processing
as a positive integer.

Default: 64

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

3-787

phased.SubbandPhaseShiftBeamformer

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a
two-row matrix. Each column of the matrix has the form
[AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle
must be between –180 and 180 degrees, and each elevation angle
must be between –90 and 90 degrees. This property applies when
you set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

SubbandsOutputPort

Output subband center frequencies

To obtain the center frequencies of each subband, set this property
to true and use the corresponding output argument when

3-788

phased.SubbandPhaseShiftBeamformer

invoking step. If you do not want to obtain the center frequencies,
set this property to false.

Default: false

Methods clone Create subband phase shift
beamformer object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Beamforming using subband
phase shifting

Examples Apply subband phase shift beamformer to an 11-element ULA. The
incident angle of the signal is 10 degrees in azimuth and 30 degrees
in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.3);
ha.Element.FrequencyRange = [20 20000];
fs = 1e3; carrierFreq = 2e3; t = (0:1/fs:2)';
x = chirp(t,0,2,fs);
c = 1500; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',true,'CarrierFrequency',carrierFreq);

incidentAngle = [10; 30];

3-789

phased.SubbandPhaseShiftBeamformer

x = step(hc,x,incidentAngle);
noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.SubbandPhaseShiftBeamformer('SensorArray',ha,...

'Direction',incidentAngle,...
'OperatingFrequency',carrierFreq,'PropagationSpeed',c,...
'SampleRate',fs,'SubbandsOutputPort',true,...
'WeightsOutputPort',true);

[y,w,subbandfreq] = step(hbf,rx);

% Plot signals
plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)));
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

% Plot response pattern for five bands
figure;
plotResponse(ha,subbandfreq(1:5).',c,'Weights',w(:,1:5));
legend('location','SouthEast')

3-790

phased.SubbandPhaseShiftBeamformer

3-791

phased.SubbandPhaseShiftBeamformer

Algorithms The subband phase shift beamformer separates the signal into several
subbands and applies narrowband phase shift beamforming to the
signal in each subband. The beamformed signals in all the subbands
are regrouped to form the output signal.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-792

phased.SubbandPhaseShiftBeamformer

See Also phased.Collector | phased.PhaseShiftBeamformer |
phased.TimeDelayBeamformer | phased.WidebandCollector |
uv2azel | phitheta2azel

Related
Examples

• “Wideband Beamforming”

3-793

phased.SubbandPhaseShiftBeamformer.clone

Purpose Create subband phase shift beamformer object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-794

phased.SubbandPhaseShiftBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-795

phased.SubbandPhaseShiftBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-796

phased.SubbandPhaseShiftBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SubbandPhaseShiftBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-797

phased.SubbandPhaseShiftBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-798

phased.SubbandPhaseShiftBeamformer.step

Purpose Beamforming using subband phase shifting

Syntax Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step(___)
[Y,FREQ] = step(___)
[Y,W,FREQ] = step(___)

Description Y = step(H,X) performs subband phase shift beamforming on the
input, X, and returns the beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property to
'Input port'.

[Y,W] = step(___) returns the beamforming weights, W. This syntax
is available when you set the WeightsOutputPort property to true.

[Y,FREQ] = step(___) returns the center frequencies of subbands,
FREQ. This syntax is available when you set the SubbandsOutputPort
property to true.

[Y,W,FREQ] = step(___) returns beamforming weights and center
frequencies of subbands. This syntax is available when you set the
WeightsOutputPort property to true and set the SubbandsOutputPort
property to true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-799

phased.SubbandPhaseShiftBeamformer.step

Input
Arguments

H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array
contains subarrays, N is the number of subarrays; otherwise, N is
the number of elements.

ANG

Beamforming directions, specified as a two-row matrix. Each
column has the form [AzimuthAngle; ElevationAngle], in degrees.
Each azimuth angle must be between –180 and 180 degrees, and
each elevation angle must be between –90 and 90 degrees.

Output
Arguments

Y

Beamformed output. Y is an M-by-L matrix, where M is the
number of rows of X and L is the number of beamforming
directions.

W

Beamforming weights. W has dimensions N-by-K-by-L. K is the
number of subbands in the NumSubbands property. L is the
number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the
number of elements. Each column of W specifies the narrowband
beamforming weights used in the corresponding subband for the
corresponding direction.

FREQ

Center frequencies of subbands. FREQ is a column vector of
length K, where K is the number of subbands in the NumSubbands
property.

Examples Apply subband phase shift beamformer to an 11-element ULA. The
incident angle of the signal is 10 degrees in azimuth and 30 degrees
in elevation.

3-800

phased.SubbandPhaseShiftBeamformer.step

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.3);
ha.Element.FrequencyRange = [20 20000];
fs = 1e3; carrierFreq = 2e3; t = (0:1/fs:2)';
x = chirp(t,0,2,fs);
c = 1500; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,...
'ModulatedInput',true,'CarrierFrequency',carrierFreq);

incidentAngle = [10; 30];
x = step(hc,x,incidentAngle);
noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));
rx = x+noise;

% Beamforming
hbf = phased.SubbandPhaseShiftBeamformer('SensorArray',ha,...

'Direction',incidentAngle,...
'OperatingFrequency',carrierFreq,'PropagationSpeed',c,...
'SampleRate',fs,'SubbandsOutputPort',true,...
'WeightsOutputPort',true);

[y,w,subbandfreq] = step(hbf,rx);

Algorithms The subband phase shift beamformer separates the signal into several
subbands and applies narrowband phase shift beamforming to the
signal in each subband. The beamformed signals in all the subbands
are regrouped to form the output signal.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

3-801

phased.SumDifferenceMonopulseTracker

Purpose Sum and difference monopulse for ULA

Description The SumDifferenceMonopulseTracker object implements a sum and
difference monopulse algorithm on a uniform linear array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator.
See “Construction” on page 3-802.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.SumDifferenceMonopulseTracker creates a tracker
System object, H. The object uses sum and difference monopulse
algorithms on a uniform linear array (ULA).

H = phased.SumDifferenceMonopulseTracker(Name,Value) creates a
ULA monopulse tracker object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-802

phased.SumDifferenceMonopulseTracker

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

Methods clone Create ULA monopulse tracker
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform monopulse tracking
using ULA

Examples Determine the direction of a target at around 60 degrees broadside
angle of a ULA.

ha = phased.ULA('NumElements',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,60.1).';
est_dir = step(hmp,x,60);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

3-803

phased.SumDifferenceMonopulseTracker

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

See Also phased.BeamscanEstimator |
phased.SumDifferenceMonopulseTracker2D |

3-804

phased.SumDifferenceMonopulseTracker.clone

Purpose Create ULA monopulse tracker object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-805

phased.SumDifferenceMonopulseTracker.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-806

phased.SumDifferenceMonopulseTracker.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-807

phased.SumDifferenceMonopulseTracker.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SumDifferenceMonopulseTracker System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-808

phased.SumDifferenceMonopulseTracker.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-809

phased.SumDifferenceMonopulseTracker.step

Purpose Perform monopulse tracking using ULA

Syntax ESTANG = step(H,X,STANG)

Description ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG
of the input signal, X, based on an initial guess of the direction.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Tracker object of type phased.SumDifferenceMonopulseTracker.

X

Input signal, specified as a row vector whose number of columns
corresponds to number of channels.

STANG

Initial guess of the direction, specified as a scalar that represents
the broadside angle in degrees. A typical initial guess is the
current steering angle. The value of STANG is between –90 and
90. The angle is defined in the array’s local coordinate system.
For details regarding the local coordinate system of the ULA, type
phased.ULA.coordinateSystemInfo.

Output
Arguments

ESTANG

Estimate of incoming direction, returned as a scalar that
represents the broadside angle in degrees. The value is between

3-810

phased.SumDifferenceMonopulseTracker.step

–90 and 90. The angle is defined in the array’s local coordinate
system.

Examples Determine the direction of a target at around 60 degrees broadside
angle of a ULA.

ha = phased.ULA('NumElements',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,60.1).';
est_dir = step(hmp,x,60);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

3-811

phased.SumDifferenceMonopulseTracker2D

Purpose Sum and difference monopulse for URA

Description The SumDifferenceMonopulseTracker2D object implements a sum and
difference monopulse algorithm for a uniform rectangular array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator.
See “Construction” on page 3-812.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker2D. The behavior of step
is specific to each object in the toolbox.

Construction H = phased.SumDifferenceMonopulseTracker2D creates a tracker
System object, H. The object uses sum and difference monopulse
algorithms on a uniform rectangular array (URA).

H = phased.SumDifferenceMonopulseTracker2D(Name,Value)
creates a URA monopulse tracker object, H, with each specified property
Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a
phased.URA object.

Default: phased.URA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-812

phased.SumDifferenceMonopulseTracker2D

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

Methods clone Create URA monopulse tracker
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform monopulse tracking
using URA

Examples Determine the direction of a target at around 60 degrees azimuth and
20 degrees elevation of a URA.

ha = phased.URA('Size',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker2D('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,[60.1; 19.5]).';
est_dir = step(hmp,x,[60; 20]);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

3-813

phased.SumDifferenceMonopulseTracker2D

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

See Also phased.BeamscanEstimator |
phased.SumDifferenceMonopulseTracker |

3-814

phased.SumDifferenceMonopulseTracker2D.clone

Purpose Create URA monopulse tracker object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-815

phased.SumDifferenceMonopulseTracker2D.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-816

phased.SumDifferenceMonopulseTracker2D.getNumOutpu

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-817

phased.SumDifferenceMonopulseTracker2D.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
SumDifferenceMonopulseTracker2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-818

phased.SumDifferenceMonopulseTracker2D.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-819

phased.SumDifferenceMonopulseTracker2D.step

Purpose Perform monopulse tracking using URA

Syntax ESTANG = step(H,X,STANG)

Description ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG
of the input signal, X, based on an initial guess of the direction.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Tracker object of type
phased.SumDifferenceMonopulseTracker2D.

X

Input signal, specified as a row vector whose number of columns
corresponds to number of channels.

STANG

Initial guess of the direction, specified as a 2-by-1 vector in the
form [AzimuthAngle; ElevationAngle] in degrees. A typical
initial guess is the current steering angle. Azimuth angles must
be between –180 and 180. Elevation angles must be between –90
and 90. Angles are measured in the local coordinate system of the
array. For details regarding the local coordinate system of the
URA, type phased.URA.coordinateSystemInfo.

3-820

phased.SumDifferenceMonopulseTracker2D.step

Output
Arguments

ESTANG

Estimate of incoming direction, returned as a 2-by-1 vector in the
form [AzimuthAngle; ElevationAngle] in degrees. Azimuth
angles are between –180 and 180. Elevation angles are between
–90 and 90. Angles are measured in the local coordinate system of
the array.

Examples Determine the direction of a target at around 60 degrees azimuth and
20 degrees elevation of a URA.

ha = phased.URA('Size',4);
hstv = phased.SteeringVector('SensorArray',ha);
hmp = phased.SumDifferenceMonopulseTracker2D('SensorArray',ha);
x = step(hstv,hmp.OperatingFrequency,[60.1; 19.5]).';
est_dir = step(hmp,x,[60; 20]);

Algorithms The tracker uses a sum-and-difference monopulse algorithm to estimate
the direction. The tracker obtains the difference steering vector by
phase-reversing the latter half of the sum steering vector.

For further details, see [1].

References [1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D.
Thesis. Georgia Institute of Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House,
1980.

See Also uv2azel | phitheta2azel | azel2uv | azel2phitheta

3-821

phased.TimeDelayBeamformer

Purpose Time delay beamformer

Description The TimeDelayBeamformer object implements a time delay beamformer.

To compute the beamformed signal:

1 Define and set up your time delay beamformer. See “Construction”
on page 3-822.

2 Call step to perform the beamforming operation according to the
properties of phased.TimeDelayBeamformer. The behavior of step is
specific to each object in the toolbox.

Construction H = phased.TimeDelayBeamformer creates a time delay beamformer
System object, H. The object performs delay and sum beamforming on
the received signal using time delays.

H = phased.TimeDelayBeamformer(Name,Value) creates a time delay
beamformer object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-822

phased.TimeDelayBeamformer

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the
Direction property of this object or from an input argument in
step. Values of this property are:

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle should be between –180 and 180. The elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

3-823

phased.TimeDelayBeamformer

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods clone Create time delay beamformer
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform time delay beamforming

Examples Apply a time delay beamformer to an 11-element array. The incident
angle of the signal is –50 degrees in azimuth and 30 degrees in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50;30];
x = step(hc,x.',incidentAngle);

3-824

phased.TimeDelayBeamformer

noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.TimeDelayBeamformer('SensorArray',ha,...

'SampleRate',fs,'PropagationSpeed',c,...
'Direction',incidentAngle);

y = step(hbf,rx);

% Plot
plot(t,rx(:,6),'r:',t,y);
xlabel('Time'); ylabel('Amplitude');
legend('Original','Beamformed');

3-825

phased.TimeDelayBeamformer

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.FrostBeamformer | phased.PhaseShiftBeamformer
| phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayLCMVBeamformer | uv2azel | phitheta2azel

3-826

phased.TimeDelayBeamformer

Related
Examples

• “Wideband Beamforming”

3-827

phased.TimeDelayBeamformer.clone

Purpose Create time delay beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-828

phased.TimeDelayBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-829

phased.TimeDelayBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-830

phased.TimeDelayBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
TimeDelayBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-831

phased.TimeDelayBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-832

phased.TimeDelayBeamformer.step

Purpose Perform time delay beamforming

Syntax Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs time delay beamforming on the input, X, and
returns the beamformed output in Y. X is an M-by-N matrix where N
is the number of elements of the sensor array. Y is a column vector
of length M.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This
syntax is available when you set the DirectionSource property
to'Input port'. ANG is a column vector of length 2 in the form of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle
must be between –180 and 180 degrees, and the elevation angle must
be between –90 and 90 degrees.

[Y,W] = step(___) returns additional output, W, as the beamforming
weights. This syntax is available when you set the WeightsOutputPort
property to true. W is a column vector of length N. For a time delay
beamformer, the weights are constant because the beamformer simply
adds all the channels together and scales the result to preserve the
signal power.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply a time delay beamformer to an 11-element array. The incident
angle of the signal is –50 degrees in azimuth and 30 degrees in elevation.

3-833

phased.TimeDelayBeamformer.step

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50;30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
hbf = phased.TimeDelayBeamformer('SensorArray',ha,...

'SampleRate',fs,'PropagationSpeed',c,...
'Direction',incidentAngle);

y = step(hbf,rx);

See Also uv2azel | phitheta2azel

3-834

phased.TimeDelayLCMVBeamformer

Purpose Time delay LCMV beamformer

Description The TimeDelayLCMVBeamformer object implements a time delay linear
constraint minimum variance beamformer.

The BeamscanEstimator object calculates a beamscan spatial spectrum
estimate for a uniform linear array.

To compute the beamformed signal:

1 Define and set up your time delay LCMV beamformer. See
“Construction” on page 3-835.

2 Call step to perform the beamforming operation according to the
properties of phased.TimeDelayLCMVBeamformer. The behavior of
step is specific to each object in the toolbox.

Construction H = phased.TimeDelayLCMVBeamformer creates a time delay linear
constraint minimum variance (LCMV) beamformer System object, H.
The object performs time delay LCMV beamforming on the received
signal.

H = phased.TimeDelayLCMVBeamformer(Name,Value) creates a time
delay LCMV beamformer object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

3-835

phased.TimeDelayLCMVBeamformer

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar.

Default: 1e6

FilterLength

FIR filter length

Specify the length of the FIR filter behind each sensor element in
the array as a positive integer.

Default: 2

Constraint

Constraint matrix

Specify the constraint matrix used for time delay LCMV
beamformer as an M-by-K matrix. Each column of the
matrix is a constraint and M is the degrees of freedom of the
beamformer. For a time delay LCMV beamformer, H, M is given
by H.SensorArray*H.FilterLength.

Default: [1; 1]

DesiredResponse

Desired response vector

Specify the desired response used for time delay LCMV
beamformer as a column vector of length K, where K is the
number of constraints in the Constraint property. Each element

3-836

phased.TimeDelayLCMVBeamformer

in the vector defines the desired response of the constraint
specified in the corresponding column of the Constraint property.

Default: 1, which is equivalent to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal
loading is a technique used to achieve robust beamforming
performance, especially when the sample support is small. This
property is tunable.

Default: 0

TrainingInputPort

Add input to specify training data

To specify additional training data, set this property to true and
use the corresponding input argument when you invoke step.
To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the
Direction property of this object or from an input argument in
step. Values of this property are:

3-837

phased.TimeDelayLCMVBeamformer

'Property' The Direction property of this object
specifies the beamforming direction.

'Input port' An input argument in each invocation
of step specifies the beamforming
direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column
vector of length 2. The direction is specified in the format of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth
angle should be between –180 and 180. The elevation angle
should be between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to
true and use the corresponding output argument when invoking
step. If you do not want to obtain the weights, set this property to
false.

Default: false

3-838

phased.TimeDelayLCMVBeamformer

Methods clone Create time delay LCMV
beamformer object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform time delay LCMV
beamforming

Examples Apply a time delay LCMV beamformer to an 11-element array. The
incident angle of the signal is –50 degrees in azimuth and 30 degrees
in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);

3-839

phased.TimeDelayLCMVBeamformer

hbf = phased.TimeDelayLCMVBeamformer('SensorArray',ha,...
'PropagationSpeed',c,'SampleRate',fs,'FilterLength',5,...
'Direction',incidentAngle);

hbf.Constraint = kron(eye(5),ones(11,1));
hbf.DesiredResponse = eye(5, 1);
y = step(hbf,rx);

% Plot
plot(t,rx(:,6),'r:',t,y);
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed');

3-840

phased.TimeDelayLCMVBeamformer

Algorithms The beamforming algorithm is the time-domain counterpart of the
narrowband linear constraint minimum variance (LCMV) beamformer.
The algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
specified constraints. The filter is specific to each sensor.

3-841

phased.TimeDelayLCMVBeamformer

References [1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array
Processing”, Proceedings of the IEEE. Vol. 60, Number 8, August, 1972,
pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.FrostBeamformer | phased.PhaseShiftBeamformer
| phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayBeamformer | uv2azel | phitheta2azel

Related
Examples

• “Wideband Beamforming”

3-842

phased.TimeDelayLCMVBeamformer.clone

Purpose Create time delay LCMV beamformer object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-843

phased.TimeDelayLCMVBeamformer.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-844

phased.TimeDelayLCMVBeamformer.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-845

phased.TimeDelayLCMVBeamformer.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
TimeDelayLCMVBeamformer System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-846

phased.TimeDelayLCMVBeamformer.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-847

phased.TimeDelayLCMVBeamformer.step

Purpose Perform time delay LCMV beamforming

Syntax Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
[Y,W] = step(___)

Description Y = step(H,X) performs time delay LCMV beamforming on the input,
X, and returns the beamformed output in Y. X is an M-by-N matrix
where N is the number of elements of the sensor array. Y is a column
vector of length M. M must be larger than the FIR filter length specified
in the FilterLength property.

Y = step(H,X,XT) uses XT as the training samples to calculate the
beamforming weights when you set the TrainingInputPort property to
true. XT is an M-by-N matrix where N is the number of elements of the
sensor array. M must be larger than the FIR filter length specified in
the FilterLength property.

Y = step(H,X,ANG) uses ANG as the beamforming direction, when you
set the DirectionSource property to 'Input port'. ANG is a column
vector of length 2 in the form of [AzimuthAngle; ElevationAngle] (in
degrees). The azimuth angle must be between –180 and 180 degrees,
and the elevation angle must be between –90 and 90 degrees.

You can combine optional input arguments when their enabling
properties are set: Y = step(H,X,XT,ANG)

[Y,W] = step(___) returns additional output, W, as the beamforming
weights when you set the WeightsOutputPort property to true. W is
a column vector of length L, where L is the degrees of freedom of the
beamformer. For a time delay LCMV beamformer, H, L is given by
H.SensorArray*H.FilterLength.

3-848

phased.TimeDelayLCMVBeamformer.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply a time delay LCMV beamformer to an 11-element array. The
incident angle of the signal is –50 degrees in azimuth and 30 degrees
in elevation.

% Signal simulation
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
ha.Element.FrequencyRange = [20 20000];
fs = 8e3; t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340; % Wave propagation speed (m/s)
hc = phased.WidebandCollector('Sensor',ha,...

'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50; 30];
x = step(hc,x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x+noise;

% Beamforming
ha = phased.ULA('NumElements',11,'ElementSpacing',0.04);
hbf = phased.TimeDelayLCMVBeamformer('SensorArray',ha,...

'PropagationSpeed',c,'SampleRate',fs,'FilterLength',5,...
'Direction',incidentAngle);

hbf.Constraint = kron(eye(5),ones(11,1));
hbf.DesiredResponse = eye(5, 1);
y = step(hbf,rx);

3-849

phased.TimeDelayLCMVBeamformer.step

Algorithms The beamforming algorithm is the time-domain counterpart of the
narrowband linear constraint minimum variance (LCMV) beamformer.
The algorithm does the following:

1 Steers the array to the beamforming direction.

2 Applies an FIR filter to the output of each sensor to achieve the
specified constraints. The filter is specific to each sensor.

See Also uv2azel | phitheta2azel

3-850

phased.TimeVaryingGain

Purpose Time varying gain control

Description The TimeVaryingGain object applies a time varying gain to input
signals. Time varying gain (TVG) is sometimes called automatic gain
control (AGC).

To apply the time varying gain to the signal:

1 Define and set up your time varying gain controller. See
“Construction” on page 3-851.

2 Call step to apply the time varying gain according to the properties
of phased.TimeVaryingGain. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.TimeVaryingGain creates a time varying gain control
System object, H. The object applies a time varying gain to the input
signal to compensate for the signal power loss due to the range.

H = phased.TimeVaryingGain(Name,Value) creates an object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties RangeLoss

Loss at each input sample range

Specify the loss (in decibels) due to the range for each sample
in the input signal as a vector.

Default: 0

ReferenceLoss

Loss at reference range

Specify the loss (in decibels) at a given reference range as a scalar.

Default: 0

3-851

phased.TimeVaryingGain

Methods clone Create time varying gain object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Apply time varying gains to input
signal

Examples Apply time varying gain to a signal to compensate for signal power
loss due to range.

rngloss = 10:22; refloss = 16; % in dB
t = (1:length(rngloss))';
x = 1./db2mag(rngloss(:));
H = phased.TimeVaryingGain('RangeLoss',rngloss,...

'ReferenceLoss',refloss);
y = step(H,x);

% Plot signals
tref = find(rngloss==refloss);
stem([t t],[abs(x) abs(y)]);
hold on;
stem(tref,x(tref),'filled','r');
xlabel('Time (s)'); ylabel('Magnitude (V)');
grid on;
legend('Before time varying gain',...

'After time varying gain',...
'Reference range');

3-852

phased.TimeVaryingGain

References [1] Edde, B. Radar: Principles, Technology, Applications. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also phased.MatchedFilter | pulsint

3-853

phased.TimeVaryingGain.clone

Purpose Create time varying gain object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-854

phased.TimeVaryingGain.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-855

phased.TimeVaryingGain.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-856

phased.TimeVaryingGain.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF of the
TimeVaryingGain System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-857

phased.TimeVaryingGain.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-858

phased.TimeVaryingGain.step

Purpose Apply time varying gains to input signal

Syntax Y = step(H,X)

Description Y = step(H,X) applies time varying gains to the input signal X. The
process equalizes power levels across all samples to match a given
reference range. The compensated signal is returned in Y. X can be a
column vector, a matrix, or a cube. The gain is applied to each column
in X independently. The number of rows in X must match the length
of the loss vector specified in the RangeLoss property. Y has the same
dimensionality as X.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Apply time varying gain to a signal to compensate for signal power
loss due to range.

rngloss = 10:22; refloss = 16; % in dB
t = (1:length(rngloss))';
x = 1./db2mag(rngloss(:));
H = phased.TimeVaryingGain('RangeLoss',rngloss,...

'ReferenceLoss',refloss);
y = step(H,x);

% Plot signals
tref = find(rngloss==refloss);
stem([t t],[abs(x) abs(y)]);
hold on;
stem(tref,x(tref),'filled','r');

3-859

phased.TimeVaryingGain.step

xlabel('Time (s)'); ylabel('Magnitude (V)');
grid on;
legend('Before time varying gain',...

'After time varying gain',...
'Reference range');

3-860

phased.Transmitter

Purpose Transmitter

Description The Transmitter object implements a waveform transmitter.

To compute the transmitted signal:

1 Define and set up your waveform transmitter. See “Construction”
on page 3-861.

2 Call step to compute the transmitted signal according to the
properties of phased.Transmitter. The behavior of step is specific
to each object in the toolbox.

Construction H = phased.Transmitter creates a transmitter System object, H. This
object transmits the input waveform samples with specified peak power.

H = phased.Transmitter(Name,Value) creates a transmitter object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties PeakPower

Peak power

Specify the transmit peak power (in watts) as a positive scalar.

Default: 5000

Gain

Transmit gain

Specify the transmit gain (in decibels) as a real scalar.

Default: 20

LossFactor

Loss factor

3-861

phased.Transmitter

Specify the transmit loss factor (in decibels) as a nonnegative
scalar.

Default: 0

InUseOutputPort

Enable transmitter status output

To obtain the transmitter in-use status for each output sample, set
this property to true and use the corresponding output argument
when invoking step. In this case, 1’s indicate the transmitter is
on, and 0’s indicate the transmitter is off. If you do not want to
obtain the transmitter in-use status, set this property to false.

Default: false

CoherentOnTransmit

Preserve coherence among pulses

Specify whether to preserve coherence among transmitted pulses.
When you set this property to true, the transmitter does not
introduce any random phase to the output pulses. When you set
this property to false, the transmitter adds a random phase noise
to each transmitted pulse. The random phase noise is introduced
by multiplication of the pulse by ejϕwhere ϕ is a uniform random
variable on the interval [0,2π].

Default: true

PhaseNoiseOutputPort

Enable pulse phase noise output

To obtain the introduced transmitter random phase noise for each
output sample, set this property to true and use the corresponding
output argument when invoking step. You can use in the receiver
to simulate coherent on receive systems. If you do not want to
obtain the random phase noise, set this property to false. This

3-862

phased.Transmitter

property applies when you set the CoherentOnTransmit property
to false.

Default: false

SeedSource

Source of seed for random number generator

'Auto' The default MATLAB random number
generator produces the random numbers.
Use 'Auto' if you are using this object
with Parallel Computing Toolbox software.

'Property' The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

This property applies when you set the CoherentOnTransmit
property to false.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232–1. This property applies when you set
the CoherentOnTransmit property to false and the SeedSource
property to 'Property'.

Default: 0

3-863

phased.Transmitter

Methods clone Create transmitter object with
same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

reset Reset states of transmitter object

step Transmit pulses

Examples Transmit a pulse containing a linear FM waveform with a bandwidth of
5 MHz. The sample rate is 10 MHz and the pulse repetition frequency
is 10 kHz.

fs = 1e7;
hwav = phased.LinearFMWaveform('SampleRate',fs,...

'PulseWidth',1e-5,'SweepBandwidth',5e6);
x = step(hwav);
htx = phased.Transmitter('PeakPower',5e3);
y = step(htx,x);

References [1] Edde, B. Radar: Principles, Technology, Applications. Englewood
Cliffs, NJ: Prentice Hall, 1993.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

3-864

phased.Transmitter

See Also phased.Radiator | phased.ReceiverPreamp |

3-865

phased.Transmitter.clone

Purpose Create transmitter object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-866

phased.Transmitter.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-867

phased.Transmitter.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-868

phased.Transmitter.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the Transmitter
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-869

phased.Transmitter.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles,
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-870

phased.Transmitter.reset

Purpose Reset states of transmitter object

Syntax reset(H)

Description reset(H) resets the states of the Transmitter object, H. This method
resets the random number generator state if the SeedSource property
is applicable and has the value 'Property'.

3-871

phased.Transmitter.step

Purpose Transmit pulses

Syntax Y = step(H,X)
[Y,STATUS] = step(H,X)
[Y,PHNOISE] = step(H,X)

Description Y = step(H,X) returns the transmitted signal Y, based on the input
waveform X. Y is the amplified X where the amplification is based on the
characteristics of the transmitter, such as the peak power and the gain.

[Y,STATUS] = step(H,X) returns additional output STATUS as the
on/off status of the transmitter when the InUseOutputPort property is
true. STATUS is a logical vector where true indicates the transmitter
is on for the corresponding sample time, and false indicates the
transmitter is off.

[Y,PHNOISE] = step(H,X) returns the additional output PHNOISE as
the random phase noise added to each transmitted sample when the
CoherentOnTransmit property is false and the PhaseNoiseOutputPort
property is true. PHNOISE is a vector which has the same dimension as
Y. Each element in PHNOISE contains the random phase between 0 and
2*pi, added to the corresponding sample in Y by the transmitter.

You can combine optional output arguments when their enabling
properties are set. Optional outputs must be listed in the same order as
the order of the enabling properties. For example:

[Y,STATUS,PHNOISE] = step(H,X)

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-872

phased.Transmitter.step

Examples Transmit a pulse containing a linear FM waveform. The sample rate is
10 MHz and the pulse repetition frequency is 50 kHz. The transmitter
peak power is 5 kw.

fs = 1e7;
hwav = phased.LinearFMWaveform('SampleRate',fs,...

'PulseWidth',1e-5,'SweepBandwidth',5e6);
x = step(hwav);
htx = phased.Transmitter('PeakPower',5e3);
y = step(htx,x);

3-873

phased.ULA

Purpose Uniform linear array

Description The ULA object creates a uniform linear array.

To compute the response for each element in the array for specified
directions:

1 Define and set up your uniform linear array. See “Construction”
on page 3-874.

2 Call step to compute the response according to the properties of
phased.ULA. The behavior of step is specific to each object in the
toolbox.

Construction H = phased.ULA creates a uniform linear array (ULA) System object,
H. The object models a ULA formed with identical sensor elements.
The origin of the local coordinate system is the phase center of the
array. The positive x-axis is the direction normal to the array, and the
elements of the array are located along the y-axis.

H = phased.ULA(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.ULA(N,D,Name,Value) creates a ULA object, H, with the
NumElements property set to N, the ElementSpacing property set to
D, and other specified property Names set to the specified Values. N and
D are value-only arguments. To specify a value-only argument, you
must also specify all preceding value-only arguments. You can specify
name-value pair arguments in any order.

Properties Element

Element of array

Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

3-874

phased.ULA

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

NumElements

Number of elements

An integer containing the number of elements in the array.

Default: 2

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent
elements in the array.

Default: 0.5

Methods clone Create ULA object with same
property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of array

release Allow property value and input
characteristics

3-875

phased.ULA

step Output responses of array
elements

viewArray View array geometry

Examples Response of Antenna Array

Create a 4-element ULA and find the response of each element at the
boresight. Plot the array response at 1 GHz for azimuth angles between
–180 and 180 degrees.

ha = phased.ULA('NumElements',4);
fc = 1e9;
ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
plotResponse(ha,fc,c)

3-876

phased.ULA

Response of Microphone Array

Find and plot the response of an array of 10 microphones. In this
example, the Element property matches the acoustic frequency range of
a microphone.

hmic = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

Nele = 10;
hula = phased.ULA('NumElements',Nele,...

3-877

phased.ULA

'ElementSpacing',3e-3,...
'Element',hmic);

fc = 100;
ang = [0; 0];
resp = step(hula,fc,ang);
c = 340;
plotResponse(hula,fc,c,'RespCut','Az','Format','Polar');

References [1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

3-878

phased.ULA

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.URA |

Related
Examples

• Phased Array Gallery

3-879

../examples/phased-array-gallery.html

phased.ULA.clone

Purpose Create ULA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-880

phased.ULA.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

3-881

phased.ULA.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at a 4-element ULA.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

ha = phased.ULA(4);
y = collectPlaneWave(ha,randn(4,2),[10 30],1e8,...

physconst('LightSpeed'));

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also uv2azel | phitheta2azel

3-882

phased.ULA.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)

Description POS = getElementPosition(H) returns the element positions of the
ULA, H. POS is a 3-by-N matrix, where N is the number of elements in
H. Each column of POS defines the position of an element in the local
coordinate system, in meters, using the form [x; y; z]. The origin of the
local coordinate system is the phase center of the array. The positive
x-axis is the direction normal to the array, and the elements of the array
are located along the y-axis.

Examples Construct a default ULA, and obtain the element positions.

ha = phased.ULA;
pos = getElementPosition(ha)

3-883

phased.ULA.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
ULA object H.

Examples Construct a default ULA, and obtain the number of elements in that
array.

ha = phased.ULA;
N = getNumElements(ha)

3-884

phased.ULA.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-885

phased.ULA.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-886

phased.ULA.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the ULA System
object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-887

phased.ULA.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the
range specified by a property of H.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-888

phased.ULA.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

3-889

phased.ULA.plotResponse

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Weights

Weights applied to the array, specified as a length-N column
vector or N-by-M matrix. N is the number of elements in the
array. M is the number of frequencies in FREQ. If Weights is a
vector, the function applies the same weights to each frequency. If
Weights is a matrix, the function applies each column of weight
values to the corresponding frequency in FREQ.

Examples Line Plot Showing Multiple Frequencies

Plot the azimuth cut response of a uniform linear array along 0
elevation using a line plot. The plot shows the responses at operating
frequencies of 300 MHz and 400 MHz.

h = phased.ULA;
fc = [3e8 4e8];
c = physconst('LightSpeed');
plotResponse(h,fc,c)

3-890

phased.ULA.plotResponse

Polar Plot

Construct a 4-element ULA and plot its azimuth response in polar
format. Assume the operating frequency is 1 GHz and the wave
propagation speed is 3e8 m/s.

ha = phased.ULA(4);
fc = 1e9; c = 3e8;
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

3-891

phased.ULA.plotResponse

See Also uv2azel | azel2uv

3-892

phased.ULA.release

Purpose Allow property value and input characteristics

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-893

phased.ULA.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

3-894

phased.ULA.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Responses of array elements. RESP has dimensions N-by-M-by-L.
N is the number of elements in the phased array. Each column
of RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples Response of Antenna Array

Create a 4-element ULA and find the response of each element at the
boresight. Plot the array response at 1 GHz for azimuth angles between
–180 and 180 degrees.

ha = phased.ULA('NumElements',4);
fc = 1e9;
ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
plotResponse(ha,fc,c)

3-895

phased.ULA.step

Response of Microphone Array

Find and plot the response of an array of 10 microphones. In this
example, the Element property matches the acoustic frequency range of
a microphone.

hmic = phased.OmnidirectionalMicrophoneElement(...
'FrequencyRange',[20 20e3]);

Nele = 10;
hula = phased.ULA('NumElements',Nele,...

3-896

phased.ULA.step

'ElementSpacing',3e-3,...
'Element',hmic);

fc = 100;
ang = [0; 0];
resp = step(hula,fc,ang);
c = 340;
plotResponse(hula,fc,c,'RespCut','Az','Format','Polar');

See Also uv2azel | phitheta2azel

3-897

phased.ULA.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

3-898

phased.ULA.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

Title

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Geometry and Indices of ULA Elements

Display the geometry of a 6-element ULA, and show the indices for the
first and third elements.

ha = phased.ULA(6);
viewArray(ha,'ShowIndex',[1 3]);

3-899

phased.ULA.viewArray

See Also phased.ArrayResponse |

Related
Examples

• Phased Array Gallery

3-900

../examples/phased-array-gallery.html

phased.URA

Purpose Uniform rectangular array

Description The URA object constructs a uniform rectangular array.

To compute the response for each element in the array for specified
directions:

1 Define and set up your uniform rectangular array. See “Construction”
on page 3-901.

2 Call step to compute the response according to the properties of
phased.URA. The behavior of step is specific to each object in the
toolbox.

Construction H = phased.URA creates a uniform rectangular array (URA) System
object, H. The object models a URA formed with identical sensor
elements. Array elements are distributed in the yz-plane in a
rectangular lattice. The array look direction is along the positive x-axis.

H = phased.URA(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.URA(SZ,D,Name,Value) creates a URA object,H, with the
Size property set to SZ, the ElementSpacing property set to D and
other specified property Names set to the specified Values. SZ and D are
value-only arguments. To specify a value-only argument, you must also
specify all preceding value-only arguments. You can specify name-value
pair arguments in any order.

Properties Element

Element of array

Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

3-901

phased.URA

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

Size

Size of array

A 1-by-2 integer vector or an integer containing the
size of the array. If Size is a 1-by-2 vector, the
vector has the form [NumberOfElementsInEachRow
NumberOfElementInEachColumn]. If Size is a scalar, the array
has the same number of elements in each row and column.

Default: [2 2]

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element spacing (in
meters) of the array. If ElementSpacing is a 1x2 vector, it is
in the form of [SpacingAlongRow SpacingAlongColumn]. If
ElementSpacing is a scalar, the spacing along the row and the
spacing along the column are the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' |
'Triangular'. When you set the Lattice property to
'Rectangular', all elements in the URA are aligned in both
row and column directions. When you set the Lattice property
to 'Triangular', the elements in even rows are shifted toward
the positive row axis direction by a distance of half the element
spacing along the row.

Default: 'Rectangular'

3-902

phased.URA

Methods clone Create URA object with same
property values

collectPlaneWave Simulate received plane waves

getElementPosition Positions of array elements

getNumElements Number of elements in array

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotResponse Plot response pattern of array

release Allow property value and input
characteristics

step Output responses of array
elements

viewArray View array geometry

Definitions Spacing Along the Row

The spacing along the row is the distance between adjacent elements in
the same row.

Spacing Along the Column

The spacing along the column is the distance in the column axis
direction between adjacent rows.

3-903

phased.URA

Spacing along
the column

Spacing along
the row

Examples Construct a 2-by-3 URA with a rectangular lattice, and find the
response of each element at the boresight. Assume the operating
frequency is 1 GHz. Finally, plot the azimuth response of the array.

ha = phased.URA('Size',[2 3]);
fc = 1e9; ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

3-904

phased.URA

Comparison of Triangular and Rectangular Lattice

Find and plot the positions of the elements in a URA with a triangular
lattice and a URA with a rectangular lattice. The element spacing is
0.5 for both lattices.

% Create URAs with triangular and rectangular lattices.
h_tri = phased.URA('Size',[5 6],'Lattice','Triangular');
h_rec = phased.URA('Size',[5 6],'Lattice','Rectangular');

% Get element positions for each array.
pos_tri = getElementPosition(h_tri);

3-905

phased.URA

pos_rec = getElementPosition(h_rec);
% Get y and z coordinates. All the x coordinates are zero.
pos_yz_tri = pos_tri(2:3,:);
pos_yz_rec = pos_rec(2:3,:);

% Plot element positions in yz-plane.
figure;
set(gcf,'Position',[100 100 300 400])
subplot(2,1,1);
plot(pos_yz_tri(1,:), pos_yz_tri(2,:), '.')
axis([-1.5 1.5 -2 2])
xlabel('y'); ylabel('z')
title('Triangular Lattice')
subplot(2,1,2);
plot(pos_yz_rec(1,:), pos_yz_rec(2,:), '.')
axis([-1.5 1.5 -2 2])
xlabel('y'); ylabel('z')
title('Rectangular Lattice')

3-906

phased.URA

References [1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Brookner, E., ed. Practical Phased Array Antenna Systems. Boston:
Artech House, 1991.

3-907

phased.URA

[3] Mailloux, R. J. “Phased Array Theory and Technology,” Proceedings
of the IEEE, Vol., 70, Number 3, 1982, pp. 246–291.

[4] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ReplicatedSubarray | phased.PartitionedArray |
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ULA |

Related
Examples

• Phased Array Gallery

3-908

../examples/phased-array-gallery.html

phased.URA.clone

Purpose Create URA object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-909

phased.URA.collectPlaneWave

Purpose Simulate received plane waves

Syntax Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description Y = collectPlaneWave(H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave(H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

Input
Arguments

H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

3-910

phased.URA.collectPlaneWave

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output
Arguments

Y

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Examples Simulate the received signal at a 6-element URA. The array has a
rectangular lattice with two elements in the row direction and three
elements in the column direction.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

hURA = phased.URA([2 3]);
y = collectPlaneWave(hURA,randn(4,2),[10 30],1e8,...

physconst('LightSpeed'));

Algorithms collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. This
method does not account for the response of individual elements in
the array.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-911

phased.URA.collectPlaneWave

See Also uv2azel | phitheta2azel

3-912

phased.URA.getElementPosition

Purpose Positions of array elements

Syntax POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description POS = getElementPosition(H) returns the element positions of the
URA H. POS is a 3-by-N matrix where N is the number of elements in
H. Each column of POS defines the position of an element in the local
coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the URA, enter
phased.URA.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector, ELEIDX. The
index of a URA runs through each row, one after another. For example,
in a URA with 4 elements in each row and 3 elements in each column,
the element in the third row and second column has an index value of 10.

Examples Construct a default URA with a rectangular lattice, and obtain the
element positions.

ha = phased.URA;
pos = getElementPosition(ha)

3-913

phased.URA.getNumElements

Purpose Number of elements in array

Syntax N = getNumElements(H)

Description N = getNumElements(H) returns the number of elements, N, in the
URA object H.

Examples Construct a default URA, and obtain the number of elements.

ha = phased.URA;
N = getNumElements(ha)

3-914

phased.URA.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-915

phased.URA.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-916

phased.URA.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the URA System
object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-917

phased.URA.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(___)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input
Arguments

H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the
range specified by a property of H.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-918

phased.URA.plotResponse

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'El'. If RespCut is 'Az', CutAngle must
be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D'.

Default: true

RespCut

3-919

phased.URA.plotResponse

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'El', and '3D'. The default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Weights

Weights applied to the array, specified as a length-N column
vector or N-by-M matrix. N is the number of elements in the
array. M is the number of frequencies in FREQ. If Weights is a
vector, the function applies the same weights to each frequency. If
Weights is a matrix, the function applies each column of weight
values to the corresponding frequency in FREQ.

Examples Azimuth Response of URA

Construct a 2-by-3 URA with a rectangular lattice, and plot that array’s
azimuth response.

ha = phased.URA('Size',[2 3]);
fc = 1e9;
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

3-920

phased.URA.plotResponse

Array Response in U/V Space

Construct a 2-by-3 URA with a rectangular lattice. Plot the u cut of
that array’s response in u/v space.

ha = phased.URA('Size',[2 3]);
c = physconst('lightspeed');
plotResponse(ha,1e9,c,'Format','UV');

3-921

phased.URA.plotResponse

See Also uv2azel | azel2uv

3-922

phased.URA.release

Purpose Allow property value and input characteristics

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-923

phased.URA.step

Purpose Output responses of array elements

Syntax RESP = step(H,FREQ,ANG)

Description RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector
of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

3-924

phased.URA.step

must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Output
Arguments

RESP

Responses of array elements. RESP has dimensions N-by-M-by-L.
N is the number of elements in the phased array. Each column
of RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples Construct a 2-by-3 URA with a rectangular lattice, and find the
response of each element at the boresight. Assume the operating
frequency is 1 GHz. Finally, plot the azimuth response of the array.

ha = phased.URA('Size',[2 3]);
fc = 1e9; ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');

3-925

phased.URA.step

See Also uv2azel | phitheta2azel

3-926

phased.URA.viewArray

Purpose View array geometry

Syntax viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray(___)

Description viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(___) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

Input
Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

3-927

phased.URA.viewArray

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

Title

String specifying the title of the plot.

Default: 'Array Geometry'

Output
Arguments

hPlot

Handle of array elements in figure window.

Examples Geometry, Normal Directions, and Indices of URA Elements

Display the element positions, normal directions, and indices for all
elements of a 4-by-4 URA.

ha = phased.URA(4);
viewArray(ha,'ShowNormals',true,'ShowIndex','All');

3-928

phased.URA.viewArray

See Also phased.ArrayResponse |

Related
Examples

• Phased Array Gallery

3-929

../examples/phased-array-gallery.html

phased.WidebandCollector

Purpose Wideband signal collector

Description The WidebandCollector object implements a wideband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your wideband signal collector. See “Construction”
on page 3-930.

2 Call step to collect the signal according to the properties of
phased.WidebandCollector. The behavior of step is specific to each
object in the toolbox.

Construction H = phased.WidebandCollector creates a wideband signal collector
System object, H. The object collects incident wideband signals from
given directions using a sensor array or a single element.

H = phased.WidebandCollector(Name,Value) creates a wideband
signal collector object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

Properties Sensor

Handle of sensor

Specify the sensor as a sensor array object or an element object
in the phased package. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-930

phased.WidebandCollector

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

ModulatedInput

Assume modulated input

Set this property to true to indicate the input signal is
demodulated at a carrier frequency.

Default: true

CarrierFrequency

Carrier frequency

Specify the carrier frequency (in hertz) as a positive scalar. The
default value of this property corresponds to 1 GHz. This property
applies when the ModulatedInput property is true.

Default: 1e9

WeightsInputPort

Enable weights input

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Wavefront

Type of incoming wavefront

3-931

phased.WidebandCollector

Specify the type of incoming wavefront as one of 'Plane', or
'Unspecified':

• If you set the Wavefront property to 'Plane', the input signals
are multiple plane waves impinging on the entire array. Each
plane wave is received by all collecting elements. If the Sensor
property is an array that contains subarrays, the Wavefront
property must be 'Plane'.

• If you set the Wavefront property to 'Unspecified', the input
signals are individual waves impinging on individual sensors.

Default: 'Plane'

Methods clone Create wideband collector object
with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Collect signals

Examples Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

3-932

phased.WidebandCollector

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect signal with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

ha = phased.ULA('NumElements',3);
hc = phased.WidebandCollector('Sensor',ha,...

'Wavefront','Unspecified');
x = rand(10,3); % Each column is a signal for one element
incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals
y = step(hc,x,incidentAngle);

Algorithms If the Wavefront property value is 'Plane',
phased.WidebandCollector does the following for each plane wave
signal:

1 Decomposes the signal into multiple subbands.

2 Uses the phase approximation of the time delays across collecting
elements in the far field for each subband.

3 Regroups the collected signals in all the subbands to form the output
signal.

If the Wavefront property value is 'Unspecified', phased.Wideband
Collector collects each channel independently.

For further details, see [1].

3-933

phased.WidebandCollector

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.Collector |

3-934

phased.WidebandCollector.clone

Purpose Create wideband collector object with same property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-935

phased.WidebandCollector.getNumInputs

Purpose Number of expected inputs to step method

Syntax N = getNumInputs(H)

Description N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-936

phased.WidebandCollector.getNumOutputs

Purpose Number of outputs from step method

Syntax N = getNumOutputs(H)

Description N = getNumOutputs(H) returns the number of outputs, N, from the
step method. This value will change if you change any properties that
turn outputs on or off.

3-937

phased.WidebandCollector.isLocked

Purpose Locked status for input attributes and nontunable properties

Syntax TF = isLocked(H)

Description TF = isLocked(H) returns the locked status, TF, for the
WidebandCollector System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-938

phased.WidebandCollector.release

Purpose Allow property value and input characteristics changes

Syntax release(H)

Description release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-939

phased.WidebandCollector.step

Purpose Collect signals

Syntax Y = step(H,X,ANG)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,WEIGHTS,STEERANGLE)

Description Y = step(H,X,ANG) collects signals X arriving from directions ANG. The
collection process depends on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects
all the far field signals in X. Each column of Y contains the output of
the corresponding element in response to all the signals in X.

• If Wavefront has the value 'Unspecified', each collecting element
collects only one impinging signal from X. Each column of Y
contains the output of the corresponding element in response to the
corresponding column of X. The 'Unspecified' option is available
when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

3-940

phased.WidebandCollector.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type
of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Input
Arguments

H

Collector object.

X

Arriving signals. Each column of X represents a separate signal.
The specific interpretation of X depends on the Wavefront
property of H.

Wavefront
Property
Value

Description

'Plane' Each column of X is a far field signal.

'Unspecified' Each column of X is the signal impinging
on the corresponding element. In this case,
the number of columns in X must equal the
number of collecting elements in the Sensor
property.

ANG

Incident directions of signals, specified as a two-row matrix.
Each column specifies the incident direction of the corresponding
column of X. Each column of ANG has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180
and 180 degrees, inclusive. The elevation angle must be between
–90 and 90 degrees, inclusive.

3-941

phased.WidebandCollector.step

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where
M is the number of collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between –180 and 180 degrees, inclusive.
The elevation angle must be between –90 and 90 degrees,
inclusive.

Output
Arguments

Y

Collected signals. Each column of Y contains the output of the
corresponding element. The output is the response to all the
signals in X, or one signal in X, depending on the Wavefront
property of H.

Examples Collect signal with a single antenna.

ha = phased.IsotropicAntennaElement;
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha = phased.ULA('NumElements',5);
hc = phased.WidebandCollector('Sensor',ha);
x = [1;1];
incidentAngle = [10 30]';
y = step(hc,x,incidentAngle);

3-942

phased.WidebandCollector.step

Collect signal with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

ha = phased.ULA('NumElements',3);
hc = phased.WidebandCollector('Sensor',ha,...

'Wavefront','Unspecified');
x = rand(10,3); % Each column is a signal for one element
incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals
y = step(hc,x,incidentAngle);

Algorithms If the Wavefront property value is 'Plane',
phased.WidebandCollector does the following for each plane wave
signal:

1 Decomposes the signal into multiple subbands.

2 Uses the phase approximation of the time delays across collecting
elements in the far field for each subband.

3 Regroups the collected signals in all the subbands to form the output
signal.

If the Wavefront property value is 'Unspecified', phased.Wideband
Collector collects each channel independently.

For further details, see [1].

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-943

phased.WidebandCollector.step

3-944

4

Functions-Alphabetical List

albersheim

Purpose Required SNR using Albersheim’s equation

Syntax SNR = albersheim(prob_Detection,prob_FalseAlarm)
SNR = albersheim(prob_Detection,prob_FalseAlarm,N)

Description SNR = albersheim(prob_Detection,prob_FalseAlarm) returns the
signal-to-noise ratio in decibels. This value indicates the ratio required
to achieve the given probabilities of detection prob_Detection and
false alarm prob_FalseAlarm for a single sample.

SNR = albersheim(prob_Detection,prob_FalseAlarm,N) determines
the required SNR for the noncoherent integration of N samples.

Definitions Albersheim’s Equation

Albersheim’s equation uses a closed-form approximation to calculate
the SNR. This SNR value is required to achieve the specified detection
and false-alarm probabilities for a nonfluctuating target in independent
and identically distributed Gaussian noise. The approximation is valid
for a linear detector and is extensible to the noncoherent integration of
N samples.

Let

A
PFA

= ln .0 62

and

B P
P
D

D
= −ln

1

where PFA and PD are the false-alarm and detection probabilities.

Albersheim’s equation for the required SNR in decibels is:

SNR = − + + + + +5 6 2 4 54 0 44 0 12 1 710 10log [. . / .]log (. .)N N A AB B

where N is the number of noncoherently integrated samples.

4-2

albersheim

Examples Compute the required single sample SNR for a detection probability of
0.9 as a function of the false-alarm probability.

Pfa=0.0001:0.0001:.01; % False-alarm probabilities
Pd=0.9; % probability of detection
SNR = zeros(1,length(Pfa)); % preallocate space
for j=1:length(Pfa)

SNR(j) = albersheim(Pd,Pfa(j));
end
plot(Pfa,SNR,'k','linewidth',2);
axis tight;
xlabel('Probability of False Alarm');
ylabel('Required SNR (dB)');
title('Required SNR for P_D=0.9 (N=1)');

Compute the required SNR for 10 noncoherently integrated samples
as a function of the false-alarm probability with the probability of
detection equal to 0.9.

4-3

albersheim

Pfa=0.0001:0.0001:.01; % False-alarm probabilities
Pd=0.9; % probability of detection
SNR = zeros(1,length(Pfa)); % preallocate space
for j=1:length(Pfa)

SNR(j) = albersheim(Pd,Pfa(j),10);
end
plot(Pfa,SNR,'k','linewidth',2);
axis tight;
xlabel('Probability of False Alarm');
ylabel('Required SNR (dB)');
title('Required SNR for P_D=0.9 (N=10)');

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, p. 329.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001, p. 49.

See Also shnidman

4-4

ambgfun

Purpose Ambiguity function

Syntax afmag = ambgfun(x,Fs,PRF)
[afmag,delay,doppler] = ambgfun(x,Fs,PRF)
[afmag,delay,doppler] = ambgfun(x,Fs,PRF,'Cut','2D')
[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler')
[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay')
ambgfun(x,Fs,PRF)
ambgfun(x,Fs,PRF,'Cut','2D')
ambgfun(x,Fs,PRF,'Cut','Delay')
ambgfun(x,Fs,PRF,'Cut','Doppler')

Description afmag = ambgfun(x,Fs,PRF) returns the magnitude of the normalized
ambiguity function for the vector x. The sampling of x occurs at Fs
hertz with pulse repetition frequency, PRF. The sampling frequency Fs
divided by the pulse repetition frequency PRF is the number of samples
per pulse.

[afmag,delay,doppler] = ambgfun(x,Fs,PRF) or
[afmag,delay,doppler] = ambgfun(x,Fs,PRF,'Cut','2D')
returns the time delay vector, delay, and the Doppler frequency vector,
doppler.

[afmag,delay] = ambgfun(x,Fs,PRF,'Cut','Doppler') returns
the zero Doppler cut through the 2-D normalized ambiguity function
magnitude.

[afmag,doppler] = ambgfun(x,Fs,PRF,'Cut','Delay') returns
the zero delay cut through the 2-D normalized ambiguity function
magnitude.

ambgfun(x,Fs,PRF) or ambgfun(x,Fs,PRF,'Cut','2D') with no
output argument produces a contour plot of the ambiguity function.

ambgfun(x,Fs,PRF,'Cut','Delay') or
ambgfun(x,Fs,PRF,'Cut','Doppler') with no output argument
produces a line plot of the ambiguity function cut.

4-5

ambgfun

Input
Arguments

x

Pulse waveform. x is a row or column vector.

Fs

Sampling frequency in hertz.

PRF

Pulse repetition frequency in hertz.

Output
Arguments

afmag

Normalized ambiguity function magnitudes. afmag is an M-by-N
matrix where M is the number of Doppler frequencies and N is the
number of time delays.

delay

Time delay vector. delay is an N-by-1 vector of time delays. The time
delay vector consists of N = 2*length(x)-1 linearly spaced samples in
the interval (-length(x)/Fs, length(x)/Fs). The spacing between
elements is the reciprocal of the sampling frequency.

doppler

Doppler frequency vector. doppler is an M-by-1 vector of Doppler
frequencies. The Doppler frequency vector consists of linearly
spaced samples in the frequency interval [-Fs/2,Fs/2). The
spacing between elements in the Doppler frequency vector is
Fs/2^nextpow2(2*length(x)-1).

Definitions Normalized Ambiguity Function

The magnitude of the normalized ambiguity function is defined as:

| (,)| | () () |*A t f
E

x u e x u t dud
x

j f ud= −
−∞

∞
∫1 2

4-6

ambgfun

where Ex is the norm of the signal, x(t), t is the time delay, and fd is a
Doppler shift. The asterisk (*) denotes the complex conjugate.

The ambiguity function is a function of two variables that describes the
effects of time delays and Doppler shifts on the output of a matched
filter.

The magnitude of the ambiguity function at zero time delay and

Doppler shift, | (,)|,A 0 0 indicates the matched filter output when the
received waveform exhibits the time delay and Doppler shift for which
the matched filter is designed. Nonzero values of the time delay and
Doppler shift variables indicate that the received waveform exhibits
mismatches in time delay and Doppler shift from the matched filter.

The magnitude of the ambiguity function achieves maximum value
at (0,0). At this point, there is perfect correspondence between the
received waveform and the matched filter. In the normalized ambiguity
function, the maximum value equals one.

Examples Plot the ambiguity function magnitude of a rectangular pulse.

hrect = phased.RectangularWaveform;
% Default rectangular pulse waveform
x = step(hrect);
PRF = 2e4;
[afmag,delay,doppler] = ambgfun(x,hrect.SampleRate,PRF);
contour(delay,doppler,afmag);
xlabel('Delay (seconds)'); ylabel('Doppler Shift (hertz)');

4-7

ambgfun

Zero-Doppler cuts (autocorrelation sequences) for rectangular and
linear FM pulses of the same duration. Note the pulse compression
exhibited in the autocorrelation sequence of the linear FM pulse.

hrect = phased.RectangularWaveform('PRF',2e4);
hfm = phased.LinearFMWaveform('PRF',2e4);
xrect = step(hrect);
xfm = step(hfm);
[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,

hrect.PRF,'Cut','Doppler');
[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,

4-8

ambgfun

hfm.PRF,'Cut','Doppler');
figure;
subplot(211);
stem(delayrect,ambrect);
title('Autocorrelation of Rectangular Pulse');
subplot(212);
stem(delayfm,ambfm)
xlabel('Delay (seconds)');
title('Autocorrelation of Linear FM Pulse');

References [1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John
Wiley & Sons, 2004.

[2] Mahafza, B. R., and A. Z. Elsherbeni. MATLAB Simulations for
Radar Systems Design. Boca Raton, FL: CRC Press, 2004.

[3] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.MatchedFilter |
phased.RectangularWaveform | phased.SteppedFMWaveform |

4-9

aperture2gain

Purpose Convert effective aperture to gain

Syntax G = aperture2gain(A,lambda)

Description G = aperture2gain(A,lambda) returns the antenna gain in decibels
corresponding to an effective aperture of A square meters for an incident
electromagnetic wave with wavelength lambda meters. A can be a
scalar or vector. If A is a vector, G is a vector of the same size as A. The
elements of G represent the gains for the corresponding elements of A.
lambda must be a scalar.

Input
Arguments

A

Antenna effective aperture in square meters. The effective aperture
describes how much energy is captured from an incident electromagnetic
plane wave. The argument describes the functional area of the
antenna and is not equivalent to the actual physical area. For a fixed
wavelength, the antenna gain is proportional to the effective aperture.
A can be a scalar or vector. If A is a vector, each element of A is the
effective aperture of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an
electromagnetic wave is the ratio of the wave propagation speed to the
frequency. For a fixed effective aperture, the antenna gain is inversely
proportional to the square of the wavelength. lambda must be a scalar.

Output
Arguments

G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector,
each element of G is the gain corresponding to effective aperture of the
same element in A.

Definitions Gain and Effective Aperture

The relationship between the gain, G, and effective aperture of an
antenna, Ae is:

4-10

aperture2gain

G Ae= 4
2

where λ is the wavelength of the incident electromagnetic wave. The
gain expressed in decibels is:

10 10log ()G

Examples An antenna has an effective aperture of 3 square meters. Find the
antenna gain when used to capture an electromagnetic wave with a
wavelength of 10 cm.

g = aperture2gain(3,0.1);

References [1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also gain2aperture

4-11

az2broadside

Purpose Convert azimuth angle to broadside angle

Syntax BSang = az2broadside(az,el)

Description BSang = az2broadside(az,el) returns the broadside angle BSang
corresponding to the azimuth angle, az, and the elevation angle, el.
All angles are expressed in degrees and in the local coordinate system.
az and el can be either scalars or vectors. If both of them are vectors,
their dimensions must match.

Definitions Broadside Angle

The broadside angle β corresponding to an azimuth angle az and an
elevation angle el is:

 sin (sin()cos())1 az el

where –180 ≤ az ≤ 180 and –90 ≤ el ≤ 90.

Examples Broadside Angle for Scalar Inputs

Return the broadside angle corresponding to 45 degrees azimuth and
45 degrees elevation.

BSang = az2broadside(45,45);

Broadside Angles for Vector Inputs

Return broadside angles for 10 azimuth/elevation pairs. The variables
az, el, and BSang are all 10-by-1 column vectors.

az = (75:5:120)';
el = (45:5:90)';
BSang = az2broadside(az,el);

See Also broadside2az | uv2azel | phitheta2azel

4-12

azel2phitheta

Purpose Convert angles from azimuth/elevation form to phi/theta form

Syntax PhiTheta = azel2phitheta(AzEl)

Description PhiTheta = azel2phitheta(AzEl) converts the azimuth/elevation
angle pairs to their corresponding phi/theta angle pairs.

Input
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation].

Data Types
double

Output
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, returned as a two-row matrix. Each column of
the matrix represents an angle in degrees, in the form [phi; theta]. The
matrix dimensions of PhiTheta are the same as those of AzEl.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

4-13

azel2phitheta

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox™ products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

4-14

azel2phitheta

Examples Conversion of Azimuth/Elevation Pair

Find the corresponding φ/θ representation for 30 degrees azimuth and
0 degrees elevation.

PhiTheta = azel2phitheta([30; 0]);

See Also phitheta2azel

Concepts • “Spherical Coordinates”

4-15

azel2phithetapat

Purpose Convert radiation pattern from azimuth/elevation to phi/theta form

Syntax pat_phitheta = azel2phithetapat(pat_azel,az,el)
pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta)
[pat_phitheta,phi,theta] = azel2phithetapat(___)

Description pat_phitheta = azel2phithetapat(pat_azel,az,el) expresses the
antenna radiation pattern pat_azel in φ/θ angle coordinates instead of
azimuth/elevation angle coordinates. pat_azel samples the pattern at
azimuth angles in az and elevation angles in el. The pat_phitheta
matrix covers φ values from 0 to 180 degrees and θ values from 0 to
360 degrees. pat_phitheta is uniformly sampled with a step size of
1 for φ and θ. The function interpolates to estimate the response of
the antenna at a given direction.

pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta)
uses vectors phi and theta to specify the grid at which to sample
pat_phitheta. To avoid interpolation errors, phi should cover the
range [0, 180], and theta should cover the range [0, 360].

[pat_phitheta,phi,theta] = azel2phithetapat(___) returns
vectors containing the φ and θ angles at which pat_phitheta samples
the pattern, using any of the input arguments in the previous syntaxes.

Input
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a
Q-by-P matrix. pat_azel samples the 3-D magnitude pattern in
decibels, in terms of azimuth and elevation angles. P is the length of
the az vector, and Q is the length of the el vector.

Data Types
double

az - Azimuth angles

4-16

azel2phithetapat

vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length P. Each azimuth angle is in degrees, between –180
and 180.

Data Types
double

el - Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length Q. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

phi - Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length L. Each φ angle is in degrees, between 0 and 360.

Data Types
double

theta - Theta angles
[0:180] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length M. Each θ angle is in degrees, between 0 and 180.

Data Types
double

4-17

azel2phithetapat

Output
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
M-by-L matrix

Antenna radiation pattern in phi/theta form, returned as an M-by-L
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. L is the length of the phi vector, and M
is the length of the theta vector.

phi - Phi angles
vector of length L

Phi angles at which pat_phitheta samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

theta - Theta angles
vector of length M

Theta angles at which pat_phitheta samples the pattern, returned as
a vector of length M. Angles are expressed in degrees.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is

4-18

azel2phithetapat

relative to the center of a uniform linear array, whose elements appear
as blue circles.

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

4-19

azel2phithetapat

Examples Conversion of Radiation Pattern

Convert a radiation pattern to φ/θ form, with the φ and θ angles spaced
1 degree apart.

Define the pattern in terms of azimuth and elevation.

az = -180:180;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to φ/θ space.

pat_phitheta = azel2phithetapat(pat_azel,az,el);

Plot of Converted Radiation Pattern

Plot the result of converting a radiation pattern to φ/θ form, with the φ
and θ angles spaced 1 degree apart.

Define the pattern in terms of azimuth and elevation.

az = -180:180;
el = -90:90;

4-20

azel2phithetapat

pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to φ/θ space. Store the φ and θ angles to use them
for plotting.

[pat_phitheta,phi,theta] = azel2phithetapat(pat_azel,az,el);

Plot the result.

H = surf(phi,theta,pat_phitheta);
set(H,'LineStyle','none')
xlabel('phi (degrees)');
ylabel('theta (degrees)');
zlabel('Pattern');

4-21

azel2phithetapat

Conversion of Radiation Pattern Using Specific Phi/Theta
Values

Convert a radiation pattern to φ/θ form, with the φ and θ angles spaced
5 degrees apart.

Define the pattern in terms of azimuth and elevation.

az = -180:180;
el = -90:90;

4-22

azel2phithetapat

pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Define the set of φ and θ angles at which to sample the pattern. Then,
convert the pattern.

phi = 0:5:360;
theta = 0:5:180;
pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta);

Plot the result.

H = surf(phi,theta,pat_phitheta);
set(H,'LineStyle','none')
xlabel('phi (degrees)');
ylabel('theta (degrees)');
zlabel('Pattern');

4-23

azel2phithetapat

See Also phased.CustomAntennaElement | phitheta2azel | azel2phitheta
| phitheta2azelpat

Concepts • “Spherical Coordinates”

4-24

azel2uv

Purpose Convert azimuth/elevation angles to u/v coordinates

Syntax UV = azel2uv(AzEl)

Description UV = azel2uv(AzEl) converts the azimuth/elevation angle pairs to
their corresponding coordinates in u/v space.

Input
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation].

Data Types
double

Output
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, returned as a two-row matrix. Each column of the
matrix represents an angle in the form [u; v]. The matrix dimensions of
UV are the same as those of AzEl.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

4-25

azel2uv

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

4-26

azel2uv

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Examples Conversion of Azimuth/Elevation Pair

Find the corresponding u/v representation for 30 degrees azimuth and
0 degrees elevation.

4-27

azel2uv

UV = azel2uv([30; 0]);

See Also uv2azel

Concepts • “Spherical Coordinates”

4-28

azel2uvpat

Purpose Convert radiation pattern from azimuth/elevation form to u/v form

Syntax pat_uv = azel2uvpat(pat_azel,az,el)
pat_uv = azel2uvpat(pat_azel,az,el,u,v)
[pat_uv,u,v] = azel2uvpat(___)

Description pat_uv = azel2uvpat(pat_azel,az,el) expresses the antenna
radiation pattern pat_azel in u/v space coordinates instead of
azimuth/elevation angle coordinates. pat_azel samples the pattern at
azimuth angles in az and elevation angles in el. The pat_uv matrix
uses a default grid that covers u values from –1 to 1 and v values from
–1 to 1. In this grid, pat_uv is uniformly sampled with a step size of
0.01 for u and v. The function interpolates to estimate the response of
the antenna at a given direction. Values in pat_uv are NaN for u and
v values outside the unit circle because u and v are undefined outside
the unit circle.

pat_uv = azel2uvpat(pat_azel,az,el,u,v) uses vectors u and v to
specify the grid at which to sample pat_uv. To avoid interpolation
errors, u should cover the range [–1, 1] and v should cover the range
[–1, 1].

[pat_uv,u,v] = azel2uvpat(___) returns vectors containing the u
and v coordinates at which pat_uv samples the pattern, using any of
the input arguments in the previous syntaxes.

Input
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a
Q-by-P matrix. pat_azel samples the 3-D magnitude pattern in
decibels, in terms of azimuth and elevation angles. P is the length of
the az vector, and Q is the length of the el vector.

Data Types
double

4-29

azel2uvpat

az - Azimuth angles
vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length P. Each azimuth angle is in degrees, between –90
and 90. Such azimuth angles are in the hemisphere for which u and v
are defined.

Data Types
double

el - Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length Q. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

u - u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector
of length L. Each u coordinate is between –1 and 1.

Data Types
double

v - v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector
of length M. Each v coordinate is between –1 and 1.

Data Types
double

4-30

azel2uvpat

Output
Arguments

pat_uv - Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix.
pat_uv samples the 3-D magnitude pattern in decibels, in terms of u
and v coordinates. L is the length of the u vector, and M is the length of
the v vector. Values in pat_uv are NaN for u and v values outside the
unit circle because u and v are undefined outside the unit circle.

u - u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a
vector of length L.

v - v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector
of length M.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is

4-31

azel2uvpat

relative to the center of a uniform linear array, whose elements appear
as blue circles.

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

4-32

azel2uvpat

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Examples Conversion of Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.01.

Define the pattern in terms of azimuth and elevation.

az = -90:90;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

4-33

azel2uvpat

Convert the pattern to u/v space.

pat_uv = azel2uvpat(pat_azel,az,el);

Plot of Converted Radiation Pattern

Plot the result of converting a radiation pattern to u/v form, with the u
and v coordinates spaced by 0.01.

Define the pattern in terms of azimuth and elevation.

az = -90:90;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to u/v space. Store the u and v coordinates to use
them for plotting.

[pat_uv,u,v] = azel2uvpat(pat_azel,az,el);

Plot the result.

H = surf(u,v,pat_uv);
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

4-34

azel2uvpat

Conversion of Radiation Pattern Using Specific U/V Values

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.05.

Define the pattern in terms of azimuth and elevation.

az = -90:90;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

4-35

azel2uvpat

Define the set of u and v coordinates at which to sample the pattern.
Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = azel2uvpat(pat_azel,az,el,u,v);

Plot the result.

H = surf(u,v,pat_uv);
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

4-36

azel2uvpat

See Also phased.CustomAntennaElement | azel2uv | uv2azel | uv2azelpat

Concepts • “Spherical Coordinates”

4-37

beat2range

Purpose Convert beat frequency to range

Syntax r = beat2range(fb,slope)
r = beat2range(fb,slope,c)

Description r = beat2range(fb,slope) converts the beat frequency of a dechirped
linear FMCW signal to its corresponding range. slope is the slope of
the FMCW sweep.

r = beat2range(fb,slope,c) specifies the signal propagation speed.

Input
Arguments

fb - Beat frequency of dechirped signal
M-by-1 vector | M-by-2 matrix

Beat frequency of dechirped signal, specified as an M-by-1 vector or
M-by-2 matrix in hertz. If the FMCW signal performs an upsweep or
downsweep, fb is a vector of beat frequencies.

If the FMCW signal has a triangular sweep, fb is an M-by-2 matrix in
which each row represents a pair of beat frequencies. Each row has the
form [UpSweepBeatFrequency,DownSweepBeatFrequency].

Data Types
double

slope - Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second.
If the FMCW signal has a triangular sweep, slope is the sweep slope
of the up-sweep half. In this case, slope must be positive and the
down-sweep half is assumed to have a slope of -slope.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

4-38

beat2range

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

Output
Arguments

r - Range
M-by-1 column vector

Range, returned as an M-by-1 column vector in meters. Each row of r is
the range corresponding to the beat frequency in a row of fb.

Definitions Beat Frequency

For an upsweep or downsweep FMCW signal, the beat frequency is Ft –
Fr. In this expression, Ft is the transmitted signal’s carrier frequency,
and Fr is the received signal’s carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and
downsweep have separate beat frequencies.

Algorithms If fb is a vector, the function computes c*fb/(2*slope).

If fb is an M-by-2 matrix with a row
[UpSweepBeatFrequency,DownSweepBeatFrequency], the
corresponding row in r is c*((UpSweepBeatFrequency -
DownSweepBeatFrequency)/2)/(2*slope).

Examples Range of Target in FMCW Radar System

Assume that the FMCW waveform sweeps a band of 3 MHz in 2 ms.
The dechirped target return has a beat frequency of 1 kHz.

slope = 30e6/(2e-3);
fb = 1e3;
r = beat2range(fb,slope);

4-39

beat2range

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept
Radar. Artech House, Boston, 2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also dechirp | range2beat | rdcouplingphased.FMCWWaveform |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

4-40

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

billingsleyicm

Purpose Billingsley’s intrinsic clutter motion (ICM) model

Syntax P = billingsleyicm(fd,fc,wspeed)
P = billingsleyicm(fd,fc,wspeed,c)

Description P = billingsleyicm(fd,fc,wspeed) calculates the clutter Doppler
spectrum shape, P, due to intrinsic clutter motion (ICM) at Doppler
frequencies specified in fd. ICM arises when wind blows on vegetation
or other clutter sources. This function uses Billingsley’s model in the
calculation. fc is the operating frequency of the system. wspeed is
the wind speed.

P = billingsleyicm(fd,fc,wspeed,c) specifies the propagation
speed c in meters per second.

Input
Arguments

fd

Doppler frequencies in hertz. This value can be a scalar or a vector.

fc

Operating frequency of the system in hertz

wspeed

Wind speed in meters per second

c

Propagation speed in meters per second

Default: Speed of light

Output
Arguments

P

Shape of the clutter Doppler spectrum due to intrinsic clutter motion.
The vector size of P is the same as that of fd.

4-41

billingsleyicm

Examples Calculate and plot the Doppler spectrum shape predicted by Billingsley’s
ICM model. Assume the PRF is 2 kHz, the operating frequency is
1 GHz, and the wind speed is 5 m/s.

v = -3:0.1:3; fc = 1e9; wspeed = 5; c = 3e8;
fd = 2*v/(c/fc);
p = billingsleyicm(fd,fc,wspeed);
plot(fd,pow2db(p));
xlabel('Doppler frequency (Hz)'), ylabel('P (dB)');

4-42

billingsleyicm

References [1] Billingsley, J. Low Angle Radar Clutter. Norwich, NY: William
Andrew Publishing, 2002.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

4-43

broadside2az

Purpose Convert broadside angle to azimuth angle

Syntax az = broadside2az(BSang,el)

Description az = broadside2az(BSang,el) returns the azimuth angle, az,
corresponding to the broadside angle BSang and the elevation angle,
el. All angles are in degrees and in the local coordinate system. BSang
and el can be either scalars or vectors. If both of them are vectors, their
dimensions must match.

Definitions Azimuth Angle

The azimuth angle az corresponding to a broadside angle β and
elevation angle el is:

az el sin (sin()sec())1

where –90 ≤ el ≤ 90, –90 ≤ β ≤ 90, and –180 ≤ az ≤ 180 .

Together the broadside and elevation angles must satisfy the following
inequality:

| | | | el 90

Examples Azimuth Angle for Scalar Inputs

Return the azimuth angle corresponding to a broadside angle of 45
degrees and an elevation angle of 20 degrees.

az = broadside2az(45,20);

Azimuth Angles for Vector Inputs

Return azimuth angles for 10 pairs of broadside angle and elevation
angle. The variables BSang, el, and az are all 10-by-1 column vectors.

BSang = (45:5:90)';
el = (45:-5:0)';
az = broadside2az(BSang,el);

4-44

broadside2az

See Also az2broadside | azel2uv | azel2phitheta

4-45

dechirp

Purpose Perform dechirp operation on FMCW signal

Syntax y = dechirp(x,xref)

Description y = dechirp(x,xref) mixes the incoming signal, x, with the reference
signal, xref. The signals can be complex baseband signals. In
an FMCW radar system, x is the received signal and xref is the
transmitted signal.

Input
Arguments

x - Incoming signal
M-by-N matrix

Incoming signal, specified as an M-by-N matrix. Each column of x is an
independent signal and is individually mixed with xref.

Data Types
double
Complex Number Support: Yes

xref - Reference signal
M-by-1 vector

Reference signal, specified as an M-by-1 vector.

Data Types
double
Complex Number Support: Yes

Output
Arguments

y - Dechirped signal
M-by-N matrix

Dechirped signal, returned as an M-by-N matrix. Each column is the
mixer output for the corresponding column of x.

Examples Dechirp FMCW Signal

Dechirp a delayed FMCW signal, and plot the spectrum before and
after dechirping.

4-46

dechirp

Create an FMCW signal.

Fs = 2e5; Tm = 0.001;
hwav = phased.FMCWWaveform('SampleRate',Fs,'SweepTime',Tm);
xref = step(hwav);

Dechirp a delayed copy of the signal.

x = [zeros(10,1); xref(1:end-10)];
y = dechirp(x,xref);

Plot the spectrum before and after dechirping.

figure;

psd(spectrum.periodogram,x,'NFFT',1024,'Fs',Fs,'CenterDC',true);

title('Periodogram Power Spectral Density Estimate Before Dechirping')

figure;

psd(spectrum.periodogram,y,'NFFT',1024,'Fs',Fs,'CenterDC',true);

ylim([-100 -30]);

title('Periodogram Power Spectral Density Estimate After Dechirping')

4-47

dechirp

Algorithms For column vectors x and xref, the mix operation is defined as xref
.* conj(x).

If x has multiple columns, the mix operation applies the preceding
expression to each column of x independently.

The mix operation negates the Doppler shift embedded in x, because of
the order of xref and x.

The mixing order affects the sign of the imaginary part of y. There is
no consistent convention in the literature about the mixing order. This
function and the beat2range function use the same convention. If your
program processes the output of dechirp in other ways, take the mixing
order into account.

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept
Radar. Boston: Artech House, 2009.

4-48

dechirp

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also beat2rangephased.RangeDopplerResponse |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

4-49

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

delayseq

Purpose Delay or advance sequence

Syntax shifted_data = delayseq(data,DELAY)
shifted_data = delayseq(data,DELAY,Fs)

Description shifted_data = delayseq(data,DELAY) delays or advances the input
data by DELAY samples. Negative values of DELAY advance data, while
positive values delay data. Noninteger values of DELAY represent
fractional delays or advances. In this case, the function interpolates.
How the delayseq function operates on the columns of data depends on
the dimensions of data and DELAY:

• If DELAY is a scalar, the function applies that shift to each column
of data.

• If DELAY is a vector whose length equals the number of columns of
data, the function shifts each column by the corresponding vector
entry.

• If DELAY is a vector and data has one column, the function shifts
data by each entry in DELAY independently. The number of columns
in shifted_data is the vector length of DELAY. The kth column of
shifted_data is the result of shifting data by DELAY(k).

shifted_data = delayseq(data,DELAY,Fs) specifies DELAY in
seconds. Fs is the sampling frequency of data. If DELAY is not divisible
by the reciprocal of the sampling frequency, delayseq interpolates to
implement a fractional delay or advance of data.

Input
Arguments

data

Vector or matrix of real or complex data.

DELAY

Amount by which to delay or advance the input. If you specify the
optional Fs argument, DELAY is in seconds; otherwise, DELAY is in
samples.

4-50

delayseq

Fs

Sampling frequency of the data in hertz. If you specify this argument,
the function assumes DELAY is in seconds.

Default: 1

Output
Arguments

shifted_data

Result of delaying or advancing the data. shifted_data has the same
number of rows as data, with appropriate truncations or zero padding.

Examples Implement integer delay of input sequence in seconds.

Fs = 1e4;
t = 0:1/Fs:0.005;
data = cos(2*pi*1000*t)'; % data is a column vector
% Delay input by 0.5 milliseconds (5 samples)
shifted_data = delayseq(data,0.0005,Fs);
subplot(211);
plot(t.*1000,data); title('Input');
subplot(212);
plot(t.*1000,shifted_data); title('0.5-millisecond delay');
xlabel('milliseconds');

4-51

delayseq

Implement fractional delay of input sequence in seconds.

Fs = 1e4;
t = 0:1/Fs:0.005;
data = cos(2*pi*1000*t)'; % data is a column vector
% Delay input by 0.75 milliseconds (7.5 samples)
shifted_data = delayseq(data,0.00075,Fs);
figure;
subplot(211);
plot(t.*1000,data); title('Input');
subplot(212);
plot(t.*1000,shifted_data);
title('0.75-millisecond (fractional) delay');
axis([0 5 -1.1 1.1]); xlabel('milliseconds');

4-52

delayseq

Note that the values of the shifted sequence differ from the input
because of the interpolation resulting from the fractional delay.

See Also phased.TimeDelayBeamformer |

4-53

depressionang

Purpose Depression angle of surface target

Syntax depAng = depressionang(H,R)
depAng = depressionang(H,R,MODEL)
depAng = depressionang(H,R,MODEL,Re)

Description depAng = depressionang(H,R) returns the depression angle from the
horizontal at an altitude of H meters to surface targets. The sensor
is H meters above the surface. R is the range from the sensor to the
surface targets. The computation assumes a curved earth model with
an effective earth radius of approximately 4/3 times the actual earth
radius.

depAng = depressionang(H,R,MODEL) specifies the earth model used
to compute the depression angle. MODEL is either 'Flat' or 'Curved'.

depAng = depressionang(H,R,MODEL,Re) specifies the effective earth
radius. Effective earth radius applies to a curved earth model. When
MODEL is 'Flat', the function ignores Re.

Input
Arguments

H

Height of the sensor above the surface, in meters. This argument can
be a scalar or a vector. If both H and R are nonscalar, they must have
the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument
can be a scalar or a vector. If both H and R are nonscalar, they must
have the same dimensions. R must be between H and the horizon range
determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

4-54

depressionang

Re

Effective earth radius in meters. This argument requires a positive
scalar value.

Default: effearthradius, which is approximately 4/3 times the
actual earth radius

Output
Arguments

depAng

Depression angle, in degrees, from the horizontal at the sensor altitude
toward surface targets R meters from the sensor. The dimensions of
depAng are the larger of size(H) and size(R).

Definitions Depression Angle

The depression angle is the angle between a horizontal line containing
the sensor and the line from the sensor to a surface target.

H

Sensor

Target

R

Depression
angle

Earth

For the curved earth model with an effective earth radius of Re, the
depression angle is:

sin
()

1
2 22
2

H HR R
R H R

e

e

For the flat earth model, the depression angle is:

4-55

depressionang

sin

1 H
R

Examples Calculate the depression angle for a ground clutter patch that is 1000 m
away from the sensor. The sensor is located on a platform that is 300 m
above the ground.

depang = depressionang(300,1000);

References [1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also grazingang | horizonrange

4-56

dop2speed

Purpose Convert Doppler shift to speed

Syntax radvel = dop2speed(Doppler_shift,wavelength)

Description radvel = dop2speed(Doppler_shift,wavelength) returns the radial
velocity in meters per second. This value corresponds to the one-way
Doppler shift, Doppler_shift, for the wavelength wavelength in
meters.

Definitions The following equation defines the speed of a source relative to a
receiver based on the one-way Doppler shift:

V fs r, = Δ

where Vs,r denotes the radial velocity of the source relative to the
receiver, Δf, is the Doppler shift in hertz, and λ is the carrier frequency
wavelength in meters.

Examples Calculate the speed of an automobile for continuous-wave radar based
on the Doppler shift.

f0=24.15e9; % 24.15 GHz carrier
lambda=physconst('LightSpeed')/f0; % wavelength
% Assume Doppler shift of 2880 Hz
radvel = dop2speed(2880,lambda);
% Roughly 35.75 meters per second (80 miles/hour)

References [1] Rappaport, T. Wireless Communications: Principles & Practices.
Upper Saddle River, NJ: Prentice Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also dopsteeringvec | speed2dop

4-57

dopsteeringvec

Purpose Doppler steering vector

Syntax DSTV = dopsteeringvec(dopplerfreq,numpulses)
DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF)

Description DSTV = dopsteeringvec(dopplerfreq,numpulses) returns the
N-by-1 temporal (time-domain) Doppler steering vector for a target at
a normalized Doppler frequency of dopplerfreq in hertz. The pulse
repetition frequency is assumed to be 1 Hz.

DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF) specifies the
pulse repetition frequency, PRF.

Input
Arguments

dopplerfreq

The Doppler frequency in hertz. The normalized Doppler frequency is
the Doppler frequency divided by the pulse repetition frequency.

numpulses

The number of pulses. The time-domain Doppler steering vector consists
of numpulses samples taken at intervals of 1/PRF (slow-time samples).

PRF

Pulse repetition frequency in hertz. The time-domain Doppler steering
vector consists of numpulses samples taken at intervals of 1/PRF
(slow-time samples). The normalized Doppler frequency is the Doppler
frequency divided by the pulse repetition frequency.

Output
Arguments

DSTV

Temporal (time-domain) Doppler steering vector. DSTV is an N-by-1
column vector where N is the number of pulses, numpulses.

Definitions Temporal Doppler Steering Vector

The temporal (time-domain) steering vector corresponding to a point
scatterer is:

4-58

dopsteeringvec

e j f T nd p2

where n=0,1,2, ..., N-1 are slow-time samples (one sample from each
pulse), fd is the Doppler frequency, and Tp is the pulse repetition
interval. The product of the Doppler frequency and the pulse repetition
interval is the normalized Doppler frequency.

Examples Calculate the steering vector corresponding to a Doppler frequency of
200 Hz, assuming there are 10 pulses and the PRF is 1 kHz.

dstv = dopsteeringvec(200,10,1000);

References [1] Melvin, W. L. “A STAP Overview,” IEEE Aerospace and Electronic
Systems Magazine, Vol. 19, Number 1, 2004, pp. 19–35.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also dop2speed | speed2dop

4-59

effearthradius

Purpose Effective earth radius

Syntax Re = effearthradius
Re = effearthradius(RGradient)

Description Re = effearthradius returns the effective radius of spherical earth
in meters. The calculation uses a refractivity gradient of -39e-9. As a
result, Re is approximately 4/3 of the actual earth radius.

Re = effearthradius(RGradient) specifies the refractivity gradient.

Input
Arguments

RGradient

Refractivity gradient in units of 1/meter. This value must be a
nonpositive scalar.

Default: -39e-9

Output
Arguments

Re

Effective earth radius in meters.

Definitions Effective Earth Radius

The effective earth radius is a scaling of the actual earth radius. The
scale factor is:

1
1 r RGradient

where r is the actual earth radius in meters and RGradient is the
refractivity gradient. The refractivity gradient, which depends on the
altitude, is the rate of change of refraction index with altitude. The
refraction index for a given altitude is the ratio between the free-space
propagation speed and the propagation speed in the air band at that
altitude.

4-60

effearthradius

The most commonly used scale factor is 4/3. This value corresponds to a

refractivity gradient of 39 10 9 1 m .

References [1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also depressionang | horizonrange

4-61

fspl

Purpose Free space path loss

Syntax L = fspl(R,lambda)

Description L = fspl(R,lambda) returns the free space path loss in decibels for a
waveform with wavelength lambda propagated over a distance of R
meters. The minimum value of L is 0, indicating no path loss.

Input
Arguments

R

Propagation distance in meters

lambda

Wavelength in meters. The wavelength in meters is the speed of
propagation divided by the frequency in hertz.

Output
Arguments

L

Path loss in decibels. L is a nonnegative number. The minimum value
of L is 0, indicating no path loss.

Definitions Free Space Path Loss

The free space path loss, L, in decibels is:

L
R= 20

4
10log ()

Examples Calculate free space path loss in decibels incurred by a 10 gigahertz
wave over a distance of 10 kilometers.

lambda = physconst('LightSpeed')/10e9;
R = 10e3;
L = fspl(R,lambda);

References [1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

4-62

fspl

See Also phased.FreeSpace |

4-63

gain2aperture

Purpose Convert gain to effective aperture

Syntax A = gain2aperture(G,lambda)

Description A = gain2aperture(G,lambda) returns the effective aperture in
square meters corresponding to a gain of G decibels for an incident
electromagnetic wave with wavelength lambda meters. G can be a
scalar or vector. If G is a vector, A is a vector of the same size as G. The
elements of A represent the effective apertures for the corresponding
elements of G. lambda must be a scalar.

Input
Arguments

G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector, each
element of G is the gain in decibels of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an
electromagnetic wave is the ratio of the wave propagation speed to the
frequency. For a fixed effective aperture, the antenna gain is inversely
proportional to the square of the wavelength. lambda must be a scalar.

Output
Arguments

A

Antenna effective aperture in square meters. The effective aperture
describes how much energy is captured from an incident electromagnetic
plane wave. The argument describes the functional area of the
antenna and is not equivalent to the actual physical area. For a fixed
wavelength, the antenna gain is proportional to the effective aperture.
A can be a scalar or vector. If A is a vector, each element of A is the
effective aperture of the corresponding gain in G.

Definitions Gain and Effective Aperture

The relationship between the gain, G, in decibels of an antenna and
the antenna’s effective aperture is:

4-64

gain2aperture

Ae
G= 10

4
10

2
/

where λ is the wavelength of the incident electromagnetic wave.

Examples An antenna has a gain of 3 dB. Calculate the antenna’s effective
aperture when used to capture an electromagnetic wave with a
wavelength of 10 cm.

a = gain2aperture(3,0.1);

References [1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also aperture2gain

4-65

global2localcoord

Purpose Convert global to local coordinates

Syntax lclCoord = global2localcoord(gCoord, OPTION)
gCoord = global2localcoord(___ ,localOrigin)
gCoord = global2localcoord(___ ,localAxes)

Description lclCoord = global2localcoord(gCoord, OPTION) returns the
local coordinate lclCoord corresponding to the global coordinate
gCoord. OPTION determines the type of global-to-local coordinate
transformation.

gCoord = global2localcoord(___ ,localOrigin) specifies the origin
of the local coordinate system.

gCoord = global2localcoord(___ ,localAxes) specifies the axes of
the local coordinate system.

Input
Arguments

gCoord

Global coordinates in rectangular or spherical coordinate form. gCoord
is a 3-by-1 vector or 3-by-N matrix. Each column represents a global
coordinate.

If the coordinates are in rectangular form, the column represents
(X,Y,Z) in meters.

If the coordinates are in spherical form, the column represents (az,el,r).
az is the azimuth angle in degrees, el is the elevation angle in degrees,
and r is the radius in meters.

The origin of the global coordinate system is at [0; 0; 0]. That system’s
axes are the standard unit basis vectors in three-dimensional space, [1;
0; 0], [0; 1; 0], and [0; 0; 1].

OPTION

Type of coordinate transformation. Valid strings are in the next table.

4-66

global2localcoord

OPTION Transformation

'rr' Global rectangular to local
rectangular

'rs' Global rectangular to local
spherical

'sr' Global spherical to local
rectangular

'ss' Global spherical to local spherical

localOrigin

Origin of local coordinate system. localOrigin is a 3-by-1 column
vector containing the rectangular coordinate of the local coordinate
system origin with respect to the global coordinate system.

Default: [0; 0; 0]

localAxes

Axes of local coordinate system. localAxes is a 3-by-3 matrix with the
columns specifying the local X, Y, and Z axes in rectangular form with
respect to the global coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

Output
Arguments

lclCoord

Local coordinates in rectangular or spherical coordinate form.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is

4-67

global2localcoord

between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Convert between global and local coordinates in rectangular form.

lclCoord = global2localcoord([0; 1; 0], ...
'rr',[1; 1; 1]);
% Local origin is at [1; 1; 1]
% lclCoord = [0; 1; 0]-[1; 1; 1];

4-68

global2localcoord

Convert global spherical coordinate to local rectangular coordinate.

lclCoord = global2localcoord([45; 45; 50],'sr',[50; 50; 50]);
% 45 degree azimuth, 45 degree elevation, 50 meter radius

References [1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice in C, 2nd Ed. Reading, MA:
Addison-Wesley, 1995.

See Also local2globalcoord | uv2azel | phitheta2azel | azel2uv |
azel2phitheta

Concepts • “Global and Local Coordinate Systems”

4-69

grazingang

Purpose Grazing angle of surface target

Syntax grazAng = grazingang(H,R)
grazAng = grazingang(H,R,MODEL)
grazAng = grazingang(H,R,MODEL,Re)

Description grazAng = grazingang(H,R) returns the grazing angle for a sensor
H meters above the surface, to surface targets R meters away. The
computation assumes a curved earth model with an effective earth
radius of approximately 4/3 times the actual earth radius.

grazAng = grazingang(H,R,MODEL) specifies the earth model used to
compute the grazing angle. MODEL is either 'Flat' or 'Curved'.

grazAng = grazingang(H,R,MODEL,Re) specifies the effective earth
radius. Effective earth radius applies to a curved earth model. When
MODEL is 'Flat', the function ignores Re.

Input
Arguments

H

Height of the sensor above the surface, in meters. This argument can
be a scalar or a vector. If both H and R are nonscalar, they must have
the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument
can be a scalar or a vector. If both H and R are nonscalar, they must
have the same dimensions. R must be between H and the horizon range
determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

Re

4-70

grazingang

Effective earth radius in meters. This argument requires a positive
scalar value.

Default: effearthradius, which is approximately 4/3 times the
actual earth radius

Output
Arguments

grazAng

Grazing angle, in degrees. The size of grazAng is the larger of size(H)
and size(R).

Definitions Grazing Angle

The grazing angle is the angle between a line from the sensor to a
surface target, and a tangent to the earth at the site of that target.

H

Sensor

Target

R
Grazing
angleEarth

For the curved earth model with an effective earth radius of Re, the
grazing angle is:

sin

1
2 22

2
H HR R

RR
e

e

For the flat earth model, the grazing angle is:

4-71

grazingang

sin

1 H
R

Examples Determine the grazing angle of a ground target located 1000 m away
from the sensor. The sensor is mounted on a platform that is 300 m
above the ground.

grazAng = grazingang(300,1000);

References [1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

See Also depressionang | horizonrange

4-72

horizonrange

Purpose Horizon range

Syntax Rh = horizonrange(H)
Rh = horizonrange(H,Re)

Description Rh = horizonrange(H) returns the horizon range of a radar system
H meters above the surface. The computation uses an effective earth
radius of approximately 4/3 times the actual earth radius.

Rh = horizonrange(H,Re) specifies the effective earth radius.

Input
Arguments

H

Height of radar system above surface, in meters. This argument can be
a scalar or a vector.

Re

Effective earth radius in meters. This argument must be a positive
scalar.

Default: effearthradius, which is approximately 4/3 times the
actual earth radius

Output
Arguments

Rh

Horizon range in meters of radar system at altitude H.

Definitions Horizon Range

The horizon range of a radar system is the distance from the radar
system to the earth along a tangent. Beyond the horizon range, the
radar system detects no return from the surface through a direct path.

4-73

horizonrange

H
Radar

Rh

Earth

Re

The value of the horizon range is:

2 2R H He

where Re is the effective earth radius and H is the altitude of the radar
system.

Examples Determine the horizon range of an antenna that is 30 m high.

Rh = horizonrange(30);

References [1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also depressionang | effearthradius | grazingang

4-74

local2globalcoord

Purpose Convert local to global coordinates

Syntax gCoord = local2globalcoord(lclCoord,OPTION)
gCoord = local2globalcoord(___ ,localOrigin)
gCoord = local2globalcoord(___ ,localAxes)

Description gCoord = local2globalcoord(lclCoord,OPTION) returns the
global coordinate gCoord corresponding to the local coordinate
lclCoord. OPTION determines the type of local-to-global coordinate
transformation.

gCoord = local2globalcoord(___ ,localOrigin) specifies the origin
of the local coordinate system.

gCoord = local2globalcoord(___ ,localAxes) specifies the axes of
the local coordinate system.

Input
Arguments

lclCoord

Local coordinates in rectangular or spherical coordinate form.
lclCoord is a 3-by-1 vector or 3-by-N matrix. Each column represents
a local coordinate.

If the coordinates are in rectangular form, the column represents
(X,Y,Z) in meters.

If the coordinates are in spherical form, the column represents (az,el,r).
az is the azimuth angle in degrees, el is the elevation angle in degrees,
and r is the radius in meters.

OPTION

Type of coordinate transformation. Valid strings are in the next table.

4-75

local2globalcoord

OPTION Transformation

'rr' Local rectangular to global
rectangular

'rs' Local rectangular to global
spherical

'sr' Local spherical to global
rectangular

'ss' Local spherical to global spherical

localOrigin

Origin of local coordinate system. localOrigin is a 3-by-1 column
vector containing the rectangular coordinate of the local coordinate
system origin with respect to the global coordinate system.

Default: [0; 0; 0]

localAxes

Axes of local coordinate system. localAxes is a 3-by-3 matrix with the
columns specifying the local X, Y, and Z axes in rectangular form with
respect to the global coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

Output
Arguments

gCoord

Global coordinates in rectangular or spherical coordinate form. The
origin of the global coordinate system is at [0; 0; 0]. That system’s axes
are the standard unit basis vectors in three-dimensional space, [1; 0;
0], [0; 1; 0], and [0; 0; 1].

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.

4-76

local2globalcoord

The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Convert between local and global coordinate in rectangular form.

gCoord = local2globalcoord([0; 1; 0], ...
'rr',[1; 1; 1]);

4-77

local2globalcoord

% Local origin is at [1; 1; 1]
% gCoord = [1 1 1]+[0 1 0];

Convert local spherical coordinate to global rectangular coordinate.

gCoord = local2globalcoord([30; 45; 4],'sr');
% 30 degree azimuth, 45 degree elevation, 4 meter radius

References [1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice in C, 2nd Ed. Reading, MA:
Addison-Wesley, 1995.

See Also global2localcoord | uv2azel | phitheta2azel | azel2uv |
azel2phitheta

Concepts • “Global and Local Coordinate Systems”

4-78

noisepow

Purpose Receiver noise power

Syntax NPOWER = noisepow(NBW,NF,REFTEMP)

Description NPOWER = noisepow(NBW,NF,REFTEMP) returns the noise power,
NPOWER, in watts for a receiver. This receiver has a noise bandwidth
NBW in hertz, noise figure NF in decibels, and reference temperature
REFTEMP in degrees kelvin.

Input
Arguments

NBW

The noise bandwidth of the receiver in hertz. For a superheterodyne
receiver, the noise bandwidth is approximately equal to the bandwidth
of the intermediate frequency stages [1].

NF

Noise figure. The noise figure is a dimensionless quantity that indicates
how much a receiver deviates from an ideal receiver in terms of internal
noise. An ideal receiver only produces the expected thermal noise power
for a given noise bandwidth and temperature. A noise figure of 1
indicates that the noise power of a receiver equals the noise power of an
ideal receiver. Because an actual receiver cannot exhibit a noise power
value less than an ideal receiver, the noise figure is always greater
than or equal to one.

REFTEMP

Reference temperature in degrees kelvin. The temperature of the
receiver. Typical values range from 290–300 degrees kelvin.

Output
Arguments

NPOWER

Noise power in watts. The internal noise power contribution of the
receiver to the signal-to-noise ratio.

Examples Calculate the noise power of a receiver whose noise bandwidth is 10
kHz, noise figure is 1 dB, and reference temperature is 300 K.

4-79

noisepow

npower = noisepow(10e3,1,300);

References [1] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also phased.ReceiverPreamp |

4-80

npwgnthresh

Purpose Detection SNR threshold for signal in white Gaussian noise

Syntax SNRTHRESH = npwgnthresh(PFA)
SNRTHRESH = npwgnthresh(PFA,NPULS)
SNRTHRESH = npwgnthresh(PFA,NPULS,DTYPE)

Description SNRTHRESH = npwgnthresh(PFA) calculates the SNR threshold in
decibels for detecting a deterministic signal in white Gaussian noise.
The detection uses the Neyman-Pearson (NP) decision rule to achieve
a specified probability of false alarm, PFA. This function uses a
square-law detector.

SNRTHRESH = npwgnthresh(PFA,NPULS) specifies NPULS as the number
of pulses used in the pulse integration.

SNRTHRESH = npwgnthresh(PFA,NPULS,DTYPE) specifies DTYPE as
the type of detection. A square law detector is used in noncoherent
detection.

Input
Arguments

PFA

Probability of false alarm.

NPULS

Number of pulses used in the integration.

Default: 1

DTYPE

Detection type.

Specify the type of pulse integration used in the NP decision rule.
Valid choices for DTYPE are 'coherent', 'noncoherent', and 'real'.
'coherent' uses magnitude and phase information of complex-valued
samples. 'noncoherent' uses squared magnitudes. 'real' uses
real-valued samples.

4-81

npwgnthresh

Default: 'noncoherent'

Output
Arguments

SNRTHRESH

Signal-to-noise ratio threshold in decibels.

Definitions Detection in Real-Valued White Gaussian Noise

This function is designed for the detection of a nonzero mean in a
sequence of Gaussian random variables. The function assumes the
random variables are independent and identically distributed, with
zero mean.

The threshold, λ, for an NP detector can be expressed as a signal-to-noise
ratio in decibels:

10 10 2 210

2

2 10
1 2log () log ((()))

= −N erfc PFA

In this equation:

• σ2 is the variance of the white Gaussian noise sequence

• N is the number of samples

• erfc—1 is the inverse of the complementary error function

• PFA is the probability of false alarm

Detection in Complex-Valued White Gaussian Noise
(Coherent Samples)

The NP detector for complex-valued signals is similar to that discussed
in “Detection in Real-Valued White Gaussian Noise” on page 4-82. In
addition, the function makes these assumptions:

• The variance of the complex-valued Gaussian random variable is
divided equally among the real and imaginary parts.

• The real and imaginary parts are uncorrelated.

4-82

npwgnthresh

Under these assumptions, the threshold for an NP detector expressed
as a signal-to-noise ratio in decibels is:

10 10 210

2

2 10
1 2log () log ((()))

= −N erfc PFA

Detection of Noncoherent Samples in White Gaussian Noise

For noncoherent samples in white Gaussian noise, detection of a
nonzero mean leads to a square-law detector. For a detailed derivation,
see [2], pp. 324–329.

The threshold for an NP detector expressed as a signal-to-noise ratio in
decibels is:

10 * log10(gammaincinv(1-Pfa,npulses))

In this case, gammaincinv is the inverse of the incomplete gamma
function, Pfa is the probability of false alarm, and npulses is the
number of pulses.

Examples Calculate the SNR threshold that achieves a probability of false alarm
0.01 using a detection type of 'real' with a single pulse. Then, verify
that this threshold is producing a Pfa of approximately 0.01. Do so by
constructing 10000 white real Gaussian noise samples and counting
how many times the sample passes the threshold.

snrthreshold = npwgnthresh(0.01,1,'real');
npower = 1; Ntrial = 10000;
noise = sqrt(npower)*randn(1,Ntrial);
threshold = sqrt(npower*db2pow(snrthreshold));
calculated_Pfa = sum(noise>threshold)/Ntrial;

Plot the SNR threshold against the number of pulses, for real and
complex data. In each case, the SNR threshold achieves a probability of
false alarm of 0.001.

4-83

npwgnthresh

snrcoh = zeros(1,10); % Preallocate space
snrreal = zeros(1,10);
Pfa = 1e-3;
for num = 1:10

snrreal(num) = npwgnthresh(Pfa,num,'real');
snrcoh(num) = npwgnthresh(Pfa,num,'coherent');

end
plot(snrreal,'ko-'); hold on;
plot(snrcoh,'b.-');
legend('Real data with integration',...

'Complex data with coherent integration',...
'location','southeast');

xlabel('Number of Pulses');
ylabel('SNR Required for Detection');
title('SNR Threshold for P_F_A = 0.001')
hold off

4-84

npwgnthresh

References [1] Kay, S. M. Fundamentals of Statistical Signal Processing: Detection
Theory. Upper Saddle River, NJ: Prentice Hall, 1998.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also rocpfa | rocsnr

4-85

phitheta2azel

Purpose Convert angles from phi/theta form to azimuth/elevation form

Syntax AzEl = phitheta2azel(PhiTheta)

Description AzEl = phitheta2azel(PhiTheta) converts the phi/theta angle pairs
to their corresponding azimuth/elevation angle pairs.

Input
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the
matrix represents an angle in degrees, in the form [phi; theta].

Data Types
double

Output
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, returned as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation]. The matrix dimensions of AzEl are the same as
those of PhiTheta.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

4-86

phitheta2azel

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

4-87

phitheta2azel

Examples Conversion of Phi/Theta Pair

Find the corresponding azimuth/elevation representation for
φ = 30 degrees and θ = 0 degrees.

AzEl = phitheta2azel([30; 0]);

See Also azel2phitheta

Concepts • “Spherical Coordinates”

4-88

phitheta2azelpat

Purpose Convert radiation pattern from phi/theta form to azimuth/elevation
form

Syntax pat_azel = phitheta2azelpat(pat_phitheta,phi,theta)
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el)
[pat_azel,az,el] = phitheta2azelpat(___)

Description pat_azel = phitheta2azelpat(pat_phitheta,phi,theta) expresses
the antenna radiation pattern pat_phitheta in azimuth/elevation
angle coordinates instead of φ/θ angle coordinates. pat_phitheta
samples the pattern at φ angles in phi and θ angles in theta. The
pat_azel matrix uses a default grid that covers azimuth values from
–90 to 90 degrees and elevation values from –90 to 90 degrees. In this
grid, pat_azel is uniformly sampled with a step size of 1 for azimuth
and elevation. The function interpolates to estimate the response of
the antenna at a given direction.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el)
uses vectors az and el to specify the grid at which to sample pat_azel.
To avoid interpolation errors, az should cover the range [–180, 180] and
el should cover the range [–90, 90].

[pat_azel,az,el] = phitheta2azelpat(___) returns vectors
containing the azimuth and elevation angles at which pat_azel
samples the pattern, using any of the input arguments in the previous
syntaxes.

Input
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. P is the length of the phi vector, and Q
is the length of the theta vector.

4-89

phitheta2azelpat

Data Types
double

phi - Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length P. Each φ angle is in degrees, between 0 and 360.

Data Types
double

theta - Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length Q. Each θ angle is in degrees, between 0 and 180.

Data Types
double

az - Azimuth angles
[-180:180] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length L. Each azimuth angle is in degrees, between –180
and 180.

Data Types
double

el - Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length M. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

4-90

phitheta2azelpat

Output
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
M-by-L matrix

Antenna radiation pattern in azimuth/elevation form, returned as
an M-by-L matrix. pat_azel samples the 3-D magnitude pattern in
decibels, in terms of azimuth and elevation angles. L is the length of
the az vector, and M is the length of the el vector.

az - Azimuth angles
vector of length L

Azimuth angles at which pat_azel samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

el - Elevation angles
vector of length M

Elevation angles at which pat_azel samples the pattern, returned as a
vector of length M. Angles are expressed in degrees.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

4-91

phitheta2azelpat

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

4-92

phitheta2azelpat

Examples Conversion of Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the
azimuth and elevation angles spaced 1 degree apart.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation space.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta);

Plot of Converted Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the
azimuth and elevation angles spaced 1 degree apart.

Define the pattern in terms of φ and θ.

phi = 0:360;

4-93

phitheta2azelpat

theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation space. Store the azimuth and
elevation angles to use them for plotting.

[pat_azel,az,el] = phitheta2azelpat(pat_phitheta,phi,theta);

Plot the result.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

4-94

phitheta2azelpat

Conversion of Radiation Pattern Using Specific
Azimuth/Elevation Values

Convert a radiation pattern to azimuth/elevation form, with the
azimuth and elevation angles spaced 5 degrees apart.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:180;

4-95

phitheta2azelpat

pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of azimuth and elevation angles at which to sample the
pattern. Then, convert the pattern.

az = -180:5:180;
el = -90:5:90;
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el);

Plot the result.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

4-96

phitheta2azelpat

See Also phased.CustomAntennaElement | phitheta2azel | azel2phitheta
| azel2phithetapat

Related
Examples

• Antenna Array Analysis with Custom Radiation Pattern

Concepts • “Spherical Coordinates”

4-97

../examples/antenna-array-analysis-with-custom-radiation-pattern.html

phitheta2uv

Purpose Convert phi/theta angles to u/v coordinates

Syntax UV = phitheta2uv(PhiTheta)

Description UV = phitheta2uv(PhiTheta) converts the phi/theta angle pairs to
their corresponding u/v space coordinates.

Input
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the
matrix represents an angle in degrees, in the form [phi; theta].

Data Types
double

Output
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, returned as a two-row matrix. Each column of the
matrix represents an angle in the form [u; v]. The matrix dimensions of
UV are the same as those of PhiTheta.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

4-98

phitheta2uv

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Examples Conversion of Phi/Theta Pair

Find the corresponding u/v representation for φ = 30 degrees and
θ = 0 degrees.

4-99

phitheta2uv

UV = phitheta2uv([30; 0]);

See Also uv2phitheta

Concepts • “Spherical Coordinates”

4-100

phitheta2uvpat

Purpose Convert radiation pattern from phi/theta form to u/v form

Syntax pat_uv = phitheta2uvpat(pat_phitheta,phi,theta)
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v)
[pat_uv,u,v] = phitheta2uvpat(___)

Description pat_uv = phitheta2uvpat(pat_phitheta,phi,theta) expresses the
antenna radiation pattern pat_phitheta in u/v space coordinates
instead of φ/θ angle coordinates. pat_phitheta samples the pattern
at φ angles in phi and θ angles in theta. The pat_uv matrix uses a
default grid that covers u values from –1 to 1 and v values from –1 to
1. In this grid, pat_uv is uniformly sampled with a step size of 0.01
for u and v. The function interpolates to estimate the response of the
antenna at a given direction. Values in pat_uv are NaN for u and v
values outside the unit circle because u and v are undefined outside
the unit circle.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v) uses
vectors u and v to specify the grid at which to sample pat_uv. To avoid
interpolation errors, u should cover the range [–1, 1] and v should cover
the range [–1, 1].

[pat_uv,u,v] = phitheta2uvpat(___) returns vectors containing
the u and v coordinates at which pat_uv samples the pattern, using
any of the input arguments in the previous syntaxes.

Input
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. P is the length of the phi vector, and Q
is the length of the theta vector.

Data Types
double

4-101

phitheta2uvpat

phi - Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length P. Each φ angle is in degrees, between 0 and 180.

Data Types
double

theta - Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length Q. Each θ angle is in degrees, between 0 and 90. Such
angles are in the hemisphere for which u and v are defined.

Data Types
double

u - u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector
of length L. Each u coordinate is between –1 and 1.

Data Types
double

v - v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector
of length M. Each v coordinate is between –1 and 1.

Data Types
double

4-102

phitheta2uvpat

Output
Arguments

pat_uv - Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix.
pat_uv samples the 3-D magnitude pattern in decibels, in terms of u
and v coordinates. L is the length of the u vector, and M is the length of
the v vector. Values in pat_uv are NaN for u and v values outside the
unit circle because u and v are undefined outside the unit circle.

u - u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a
vector of length L.

v - v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector
of length M.

Definitions Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

4-103

phitheta2uvpat

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Examples Conversion of Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.01.

4-104

phitheta2uvpat

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u/v space.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta);

Plot of Converted Radiation Pattern

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.01.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u/v space. Store the u and v coordinates to use
them for plotting.

[pat_uv,u,v] = phitheta2uvpat(pat_phitheta,phi,theta);

Plot the result.

H = surf(u,v,pat_uv);
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

4-105

phitheta2uvpat

Conversion of Radiation Pattern Using Specific U/V Values

Convert a radiation pattern to u/v form, with the u and v coordinates
spaced by 0.05.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

4-106

phitheta2uvpat

Define the set of u and v coordinates at which to sample the pattern.
Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v);

Plot the result.

H = surf(u,v,pat_uv);
set(H,'LineStyle','none')
xlabel('u');
ylabel('v');
zlabel('Pattern');

4-107

phitheta2uvpat

See Also phased.CustomAntennaElement | phitheta2uv | uv2phitheta |
uv2phithetapat

Concepts • “Spherical Coordinates”

4-108

physconst

Purpose Physical constants

Syntax Const = physconst(Name)

Description Const = physconst(Name) returns the constant corresponding to
the string Name in SI units. Valid values of Name are 'LightSpeed',
'Boltzmann', and 'EarthRadius'.

Input
Arguments

Name

String that indicates which physical constant the function returns. The
valid strings are not case sensitive.

Definitions The following table lists the supported constants and their values in
SI units.

Constant Description Value

'LightSpeed' Speed of light in a
vacuum

299,792,458 m/s.
Most commonly
denoted by c.

'Boltzmann' Boltzmann constant
relating energy to
temperature

1 38 10 23. x − J/K. Most
commonly denoted by
k.

'EarthRadius' Mean radius of the
Earth

6,371,000 m

Examples Wavelength Corresponding to Known Frequency

Determine the wavelength of an electromagnetic wave whose frequency
is 1 GHz.

freq = 1e9;
lambda = physconst('LightSpeed')/freq;

4-109

physconst

Thermal Noise Power

Approximate the thermal noise power per unit bandwidth in the I and
Q channels of a receiver.

Define the receiver temperature and Boltzmann constant.

T = 290;
k = physconst('Boltzmann');

Compute the noise power per unit bandwidth, split evenly between the
in-phase and quadrature channels.

Noise_power = 10*log10(k*T/2);

4-110

pulsint

Purpose Pulse integration

Syntax Y = pulsint(X)
Y = pulsint(X,METHOD)

Description Y = pulsint(X) performs video (noncoherent) integration of the pulses
in X and returns the integrated output in Y. Each column of X is one
pulse.

Y = pulsint(X,METHOD) performs pulse integration using the specified
method. METHOD is 'coherent' or 'noncoherent'.

Input
Arguments

X

Pulse input data. Each column of X is one pulse.

METHOD

Pulse integration method. METHOD is the method used to integrate the
pulses in the columns of X. Valid values of METHOD are 'coherent' and
'noncoherent'. The strings are not case sensitive.

Default: 'noncoherent'

Output
Arguments

Y

Integrated pulse. Y is an N-by-1 column vector where N is the number
of rows in the input X.

Definitions Coherent Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The coherent integration of the pulses in X is:

Y Xi ij
j

N

1

4-111

pulsint

Noncoherent (video) Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The noncoherent (video) integration of the pulses in X is:

Y Xi
j

ij

N

| |

1

2

Examples Noncoherently integrate 10 pulses.

x = repmat(sin(2*pi*(0:99)'/100),1,10)+0.1*randn(100,10);
y = pulsint(x);
subplot(211), plot(abs(x(:,1)));
ylabel('Magnitude');
title('First Pulse');
subplot(212), plot(abs(y));
ylabel('Magnitude');
title('Integrated Pulse');

4-112

pulsint

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.MatchedFilter |

4-113

radareqpow

Purpose Peak power estimate from radar equation

Syntax Pt = radareqpow(lambda,tgtrng,SNR,Tau)
Pt = radareqpow(...,Name,Value)

Description Pt = radareqpow(lambda,tgtrng,SNR,Tau) estimates the peak
transmit power required for a radar operating at a wavelength of
lambda meters to achieve the specified signal-to-noise ratio SNR in
decibels for a target at a range of tgtrng meters. The target has a
nonfluctuating radar cross section (RCS) of 1 square meter.

Pt = radareqpow(...,Name,Value) estimates the required peak
transmit power with additional options specified by one or more
Name,Value pair arguments.

Input
Arguments

lambda

Wavelength of radar operating frequency (in meters). The wavelength
is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.
Denoting the speed of light by c and the frequency (in hertz) of the wave
by f, the equation for wavelength is:

 = c
f

tgtrng

Target range in meters. When the transmitter and receiver are
colocated (monostatic radar), tgtrng is a real-valued positive scalar.
When the transmitter and receiver are not colocated (bistatic radar),
tgtrng is a 1-by-2 row vector with real-valued positive elements. The
first element is the target range from the transmitter, and the second
element is the target range from the receiver.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

4-114

radareqpow

Tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Gain

Transmitter and receiver gain in decibels (dB). When the transmitter
and receiver are colocated (monostatic radar), Gain is a real-valued
scalar. The transmit and receive gains are equal. When the transmitter
and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row
vector with real-valued elements. The first element is the transmitter
gain and the second element is the receiver gain.

Default: 20

Loss

System loss in decibels (dB). Loss represents a general loss factor
that comprises losses incurred in the system components and in the
propagation to and from the target.

Default: 0

RCS

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

Ts

System noise temperature in kelvin. The system noise temperature is
the product of the system temperature and the noise figure.

Default: 290 kelvin

4-115

radareqpow

Output
Arguments

Pt

Transmitter peak power in watts.

Definitions Point Target Radar Range Equation

The point target radar range equation estimates the power at the input
to the receiver for a target of a given radar cross section at a specified
range. The model is deterministic and assumes isotropic radiators. The
equation for the power at the input to the receiver is

P
P G G

R R L
r

t t r

t r

=

2

3 2 24()

where the terms in the equation are:

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr — Receiver gain in decibels. If the radar is monostatic, the
transmitter and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Target’s nonfluctuating radar cross section in square meters

• L — General loss factor in decibels that accounts for both system
and propagation loss

• Rt — Range from the transmitter to the target

• Rr— Range from the receiver to the target. If the radar is monostatic,
the transmitter and receiver ranges are identical.

Terms expressed in decibels such as the loss and gain factors enter the
equation in the form 10x/10 where x denotes the variable. For example,
the default loss factor of 0 dB results in a loss term of 100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents
the signal term in the signal-to-noise ratio. To model the noise term,

4-116

radareqpow

assume the thermal noise in the receiver has a white noise power
spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise
temperature. The receiver acts as a filter to shape the white noise
PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal
of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn=

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise
factor is referred to as the system temperature and is denoted by Ts,
so that Ts=TFn .

Receiver Output SNR

Using the equation for the received signal power in “Point Target Radar
Range Equation” on page 4-116 and the output noise power in “Receiver
Output Noise Power” on page 4-116, the receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=

2

3 2 24()

Solving for the peak transmit power

P
P kT R R L

N G G
t

r s t r

t r

=
()4 3 2 2

2

Examples Estimate the required peak transmit power required to achieve a
minimum SNR of 6 decibels for a target at a range of 50 kilometers. The

4-117

radareqpow

target has a nonfluctuating RCS of 1 square meter. The radar operating
frequency is 1 gigahertz. The pulse duration is 1 microsecond.

lambda = physconst('LightSpeed')/1e9;
tgtrng = 50e3;
tau = 1e-6;
SNR = 6;
Pt = radareqpow(lambda,tgtrng,SNR,tau);

Estimate the required peak transmit power required to achieve a
minimum SNR of 10 decibels for a target with an RCS of 0.5 square
meters at a range of 50 kilometers. The radar operating frequency is 10
gigahertz. The pulse duration is 1 microsecond. Assume a transmit and
receive gain of 30 decibels and an overall loss factor of 3 decibels.

lambda = physconst('LightSpeed')/10e9;
Pt = radareqpow(lambda,50e3,10,1e-6,'RCS',0.5,...

'Gain',30,'Ts',300,'Loss',3);

Estimate the required peak transmit power for a bistatic radar to
achieve a minimum SNR of 6 decibels for a target with an RCS of 1
square meter. The target is 50 kilometers from the transmitter and
75 kilometers from the receiver. The radar operating frequency is 10
gigahertz and the pulse duration is 10 microseconds. The transmitter
and receiver gains are 40 and 20 dB respectively.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
TxRng = 50e3; RvRng = 75e3;
TxRvRng =[TxRng RvRng];
TxGain = 40; RvGain = 20;
Gain = [TxGain RvGain];
Pt = radareqpow(lambda,TxRvRng,SNR,tau,'Gain',Gain);

4-118

radareqpow

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also phased.Transmitter | phased.ReceiverPreamp | noisepow |
radareqrng | radareqsnr | systemp

4-119

radareqrng

Purpose Maximum theoretical range estimate

Syntax maxrng = radareqrng(lambda,SNR,Pt,Tau)
maxrng = radareqrng(...,Name,Value)

Description maxrng = radareqrng(lambda,SNR,Pt,Tau) estimates the theoretical
maximum detectable range maxrng for a radar operating with a
wavelength of lambda meters with a pulse duration of Tau seconds.
The signal-to-noise ratio is SNR decibels, and the peak transmit power
is Pt watts.

maxrng = radareqrng(...,Name,Value) estimates the theoretical
maximum detectable range with additional options specified by one or
more Name,Value pair arguments.

Input
Arguments

lambda

Wavelength of radar operating frequency (in meters). The wavelength
is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.
Denoting the speed of light by c and the frequency (in hertz) of the wave
by f, the equation for wavelength is:

 = c
f

Pt

Transmitter peak power in watts.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

Tau

Single pulse duration in seconds.

4-120

radareqrng

Name-Value Pair Arguments

Gain

Transmitter and receiver gain in decibels (dB). When the transmitter
and receiver are colocated (monostatic radar), Gain is a real-valued
scalar. The transmit and receive gains are equal. When the transmitter
and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row
vector with real-valued elements. The first element is the transmitter
gain, and the second element is the receiver gain.

Default: 20

Loss

System loss in decibels (dB). Loss represents a general loss factor
that comprises losses incurred in the system components and in the
propagation to and from the target.

Default: 0

RCS

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

Ts

System noise temperature in kelvins. The system noise temperature is
the product of the system temperature and the noise figure.

Default: 290 kelvin

unitstr

The units of the estimated maximum theoretical range. unitstr is
one of the following strings:

• 'km' kilometers

4-121

radareqrng

• 'm' meters

• 'nmi' nautical miles (U.S.)

Default: 'm'

Output
Arguments

maxrng

The estimated theoretical maximum detectable range. The units of
maxrng depends on the value of unitstr. By default maxrng is in
meters. For bistatic radars, maxrng is the geometric mean of the range
from the transmitter to the target and the receiver to the target.

Definitions Point Target Radar Range Equation

The point target radar range equation estimates the power at the input
to the receiver for a target of a given radar cross section at a specified
range. The model is deterministic and assumes isotropic radiators. The
equation for the power at the input to the receiver is

P
P G G

R R L
r

t t r

t r

=

2

3 2 24()

where the terms in the equation are:

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr — Receiver gain in decibels. If the radar is monostatic, the
transmitter and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Target’s nonfluctuating radar cross section in square meters

• L — General loss factor in decibels that accounts for both system
and propagation loss

• Rt — Range from the transmitter to the target

4-122

radareqrng

• Rr— Range from the receiver to the target. If the radar is monostatic,
the transmitter and receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the
equation in the form 10x/10 where x denotes the variable. For example,
the default loss factor of 0 dB results in a loss term of 100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents
the signal term in the signal-to-noise ratio. To model the noise term,
assume the thermal noise in the receiver has a white noise power
spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise
temperature. The receiver acts as a filter to shape the white noise
PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal
of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn=

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise
factor is referred to as the system temperature. This value is denoted by
Ts, so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=

2

3 2 24()

You can derive this expression using the following equations:

4-123

radareqrng

• Received signal power in “Point Target Radar Range Equation” on
page 4-122

• Output noise power in “Receiver Output Noise Power” on page 4-123

Theoretical Maximum Detectable Range

For monostatic radars, the range from the target to the transmitter
and receiver is identical. Denoting this range by R, you can express

this relationship as R R Rt r
4 2 2= .

Solving for R

R
NP G G

P kT L
t t r

r s

= (
()

) /

2

3
1 4

4

For bistatic radars, the theoretical maximum detectable range is the
geometric mean of the ranges from the target to the transmitter and
receiver:

R R
NP G G

P kT L
t r

t t r

r s

= (
()

) /

2

3
1 4

4

Examples Estimate the theoretical maximum detectable range for a monostatic
radar operating at 10 GHz using a pulse duration of 10 µs. Assume the
output SNR of the receiver is 6 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
maxrng = radareqrng(lambda,SNR,Pt,tau);

Estimate the theoretical maximum detectable range for a monostatic
radar operating at 10 GHz using a pulse duration of 10 µs. The target

4-124

radareqrng

RCS is 0.1 square meters. Assume the output SNR of the receiver is 6
dB. The transmitter-receiver gain is 40 dB. Assume a loss factor of 3 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
RCS = 0.1;
Gain = 40;
Loss = 3;
maxrng2 = radareqrng(lambda,SNR,Pt,tau,'Gain',Gain,...

'RCS',RCS,'Loss',Loss);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also phased.Transmitter | phased.ReceiverPreamp | noisepow |
radareqpow | radareqsnr | systemp

4-125

radareqsnr

Purpose SNR estimate from radar equation

Syntax SNR = radareqsnr(lambda,tgtrng,Pt,tau)
SNR = radareqsnr(...,Name,Value)

Description SNR = radareqsnr(lambda,tgtrng,Pt,tau) estimates the output
signal-to-noise ratio (SNR) at the receiver based on the wavelength
lambda in meters, the range tgtrng in meters, the peak transmit
power Pt in watts, and the pulse width tau in seconds.

SNR = radareqsnr(...,Name,Value) estimates the output SNR at the
receiver with additional options specified by one or more Name,Value
pair arguments.

Input
Arguments

lambda

Wavelength of radar operating frequency in meters. The wavelength
is the ratio of the wave propagation speed to frequency. For
electromagnetic waves, the speed of propagation is the speed of light.
Denoting the speed of light by c and the frequency in hertz of the wave
by f, the equation for wavelength is:

 = c
f

tgtrng

Target range in meters. When the transmitter and receiver are
colocated (monostatic radar), tgtrng is a real-valued positive scalar.
When the transmitter and receiver are not colocated (bistatic radar),
tgtrng is a 1-by-2 row vector with real-valued positive elements. The
first element is the target range from the transmitter, and the second
element is the target range from the receiver.

Pt

Transmitter peak power in watts.

4-126

radareqsnr

tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Gain

Transmitter and receiver gain in decibels (dB). When the transmitter
and receiver are colocated (monostatic radar), Gain is a real-valued
scalar. The transmit and receive gains are equal. When the transmitter
and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row
vector with real-valued elements. The first element is the transmitter
gain, and the second element is the receiver gain.

Default: 20

Loss

System loss in decibels (dB). Loss represents a general loss factor
that comprises losses incurred in the system components and in the
propagation to and from the target.

Default: 0

RCS

Target radar cross section in square meters. The target RCS is
nonfluctuating.

Default: 1

Ts

4-127

radareqsnr

System noise temperature in kelvin. The system noise temperature is
the product of the effective noise temperature and the noise figure.

Default: 290 kelvin

Output
Arguments

SNR

The estimated output signal-to-noise ratio at the receiver in decibels.
SNR is 10log10(Pr/N). The ratio Pr/N is defined in “Receiver Output SNR”
on page 4-129.

Definitions Point Target Radar Range Equation

The point target radar range equation estimates the power at the input
to the receiver for a target of a given radar cross section at a specified
range. The model is deterministic and assumes isotropic radiators. The
equation for the power at the input to the receiver is

P
P G G

R R L
r

t t r

t r

=

2

3 2 24()

where the terms in the equation are:

• Pt — Peak transmit power in watts

• Gt — Transmitter gain in decibels

• Gr — Receiver gain in decibels. If the radar is monostatic, the
transmitter and receiver gains are identical.

• λ — Radar operating frequency wavelength in meters

• σ— Nonfluctuating target radar cross section in square meters

• L— General loss factor in decibels that accounts for both system and
propagation losses

• Rt— Range from the transmitter to the target in meters

• Rr— Range from the receiver to the target in meters. If the radar is
monostatic, the transmitter and receiver ranges are identical.

4-128

radareqsnr

Terms expressed in decibels such as the loss and gain factors enter
the equation in the form 10x/10 where x denotes the variable value in
decibels. For example, the default loss factor of 0 dB results in a loss
term equal to one in the equation (100/10).

Receiver Output Noise Power

The equation for the power at the input to the receiver represents
the signal term in the signal-to-noise ratio. To model the noise term,
assume the thermal noise in the receiver has a white noise power
spectral density (PSD) given by:

P f kT() =

where k is the Boltzmann constant and T is the effective noise
temperature. The receiver acts as a filter to shape the white noise
PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal
of the pulse duration, 1/τ. The total noise power at the output of the
receiver is:

N
kTFn=

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise
factor is referred to as the system temperature and is denoted by Ts,
so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

P
N

P G G

kT R R L
r t t r

s t r

=

2

3 2 24()

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on
page 4-128

4-129

radareqsnr

• Output noise power in “Receiver Output Noise Power” on page 4-129

Examples Estimate the output SNR for a target with an RCS of 1 square meter at
a range of 50 kilometers. The system is a monostatic radar operating at
1 gigahertz with a peak transmit power of 1 megawatt and pulse width
of 0.2 microseconds. The transmitter and receiver gain is 20 decibels
and the system temperature is 290 kelvin.

lambda = physconst('LightSpeed')/1e9;
tgtrng = 50e3;
Pt = 1e6;
tau = 0.2e-6;
snr = radareqsnr(lambda,tgtrng,Pt,tau);

Estimate the output SNR for a target with an RCS of 0.5 square meters
at 100 kilometers. The system is a monostatic radar operating at 10
gigahertz with a peak transmit power of 1 megawatt and pulse width of
1 microsecond. The transmitter and receiver gain is 40 decibels. The
system temperature is 300 kelvin and the loss factor is 3 decibels.

lambda = physconst('LightSpeed')/10e9;
snr = radareqsnr(lambda,100e3,1e6,1e-6,'RCS',0.5,...

'Gain',40,'Ts',300,'Loss',3);

Estimate the output SNR for a target with an RCS of 1 square meter.
The radar is bistatic. The target is located 50 kilometers from the
transmitter and 75 kilometers from the receiver. The radar operating
frequency is 10 gigahertz. The transmitter has a peak transmit
power of 1 megawatt with a gain of 40 decibels. The pulse width is 1
microsecond. The receiver gain is 20 decibels.

lambda = physconst('LightSpeed')/10e9;
tau = 1e-6;
Pt = 1e6;
txrvRng =[50e3 75e3];

4-130

radareqsnr

Gain = [40 20];
snr = radareqsnr(lambda,txrvRng,Pt,tau,'Gain',Gain);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.

See Also phased.Transmitter | phased.ReceiverPreamp | noisepow |
radareqrng | radareqpow | systemp

4-131

radialspeed

Purpose Relative radial speed

Syntax Rspeed = radialspeed(Pos,V)
Rspeed = radialspeed(Pos,V,RefPos)
Rspeed = radialspeed(Pos,V,RefPos,RefV)

Description Rspeed = radialspeed(Pos,V) returns the radial speed of the given
platforms relative to a reference platform. The platforms have positions
Pos and velocities V. The reference platform is stationary and is located
at the origin.

Rspeed = radialspeed(Pos,V,RefPos) specifies the position of the
reference platform.

Rspeed = radialspeed(Pos,V,RefPos,RefV) specifies the velocity
of the reference platform.

Input
Arguments

Pos

Positions of platforms, specified as a 3-by-N matrix. Each column
specifies a position in the form [x; y; z], in meters.

V

Velocities of platforms, specified as a 3-by-N matrix. Each column
specifies a velocity in the form [x; y; z], in meters per second.

RefPos

Position of reference platform, specified as a 3-by-1 vector. The vector
has the form [x; y; z], in meters.

Default: [0; 0; 0]

RefV

Velocity of reference platform, specified as a 3-by-1 vector. The vector
has the form [x; y; z], in meters per second.

4-132

radialspeed

Default: [0; 0; 0]

Output
Arguments

Rspeed

Radial speed in meters per second, as an N-by-1 vector. Each number in
the vector represents the radial speed of the corresponding platform.
Positive numbers indicate that the platform is approaching the
reference platform. Negative numbers indicate that the platform is
moving away from the reference platform.

Examples Radial Speed of Target Relative to Stationary Platform

Calculate the radial speed of a target relative to a stationary platform.
Assume the target is located at [20; 20; 0] meters and is moving with
velocity [10; 10; 0] meters per second. The reference platform is
located at [1; 1; 0].

rspeed = radialspeed([20; 20; 0],[10; 10; 0],[1; 1; 0]);

See Also phased.Platform | speed2dop

Concepts • “Doppler Shift and Pulse-Doppler Processing”
• “Motion Modeling in Phased Array Systems”

4-133

range2beat

Purpose Convert range to beat frequency

Syntax fb = range2beat(r,slope)
fb = range2beat(r,slope,c)

Description fb = range2beat(r,slope) converts the range of a dechirped linear
FMCW signal to the corresponding beat frequency. slope is the slope
of the FMCW sweep.

fb = range2beat(r,slope,c) specifies the signal propagation speed.

Input
Arguments

r - Range
array of nonnegative numbers

Range, specified as an array of nonnegative numbers in meters.

Data Types
double

slope - Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

4-134

range2beat

Output
Arguments

fb - Beat frequency of dechirped signal
array of nonnegative numbers

Beat frequency of dechirped signal, returned as an array of nonnegative
numbers in hertz. Each entry in fb is the beat frequency corresponding
to the corresponding range in r. The dimensions of fb match the
dimensions of r.

Data Types
double

Definitions Beat Frequency

For an up-sweep or down-sweep FMCW signal, the beat frequency is Ft
– Fr. In this expression, Ft is the transmitted signal’s carrier frequency,
and Fr is the received signal’s carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and
downsweep have separate beat frequencies.

Algorithms The function computes 2*r*slope/c.

Examples Maximum Beat Frequency in FMCW Radar System

Calculate the maximum beat frequency in the received signal of an
upsweep FMCW waveform. Assume that the waveform can detect
a target as far as 18 km and sweeps a 300 MHz band in 1 ms. Also
assume that the target is stationary.

slope = 300e6/1e-3;
r = 18e3;
fb = range2beat(r,slope);

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept
Radar. Artech House, Boston, 2009.

4-135

range2beat

[2] Skolnik, M.I. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

See Also beat2range | dechirp | rdcoupling |
stretchfreq2rngphased.FMCWWaveform |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

4-136

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

range2bw

Purpose Convert range resolution to required bandwidth

Syntax bw = range2bw(r)
bw = range2bw(r,c)

Description bw = range2bw(r) returns the bandwidth needed to distinguish two
targets separated by a given range. Such capability is often referred to
as range resolution. The propagation is assumed to be two-way, as in a
monostatic radar system.

bw = range2bw(r,c) specifies the signal propagation speed.

Tips • This function assumes two-way propagation. For one-way
propagation, you can find the required bandwidth by multiplying
the output of this function by 2.

Input
Arguments

r - Target range resolution
array of positive numbers

Target range resolution in meters, specified as an array of positive
numbers.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

4-137

range2bw

Output
Arguments

bw - Required bandwidth
array of nonnegative numbers

Required bandwidth in hertz, returned as an array of nonnegative
numbers. The dimensions of bware the same as those of r.

Algorithms The function computes c/(2*r).

Examples Pulse Width for Specified Range Resolution

Assume you have a monostatic radar system that uses a rectangular
waveform. Calculate the required pulse width of the waveform so that
the system can achieve a range resolution of 10 m.

r = 10;
tau = 1/range2bw(r);

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also time2range | range2timephased.FMCWWaveform |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

4-138

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

range2time

Purpose Convert propagation distance to propagation time

Syntax t = range2time(r)
t = range2time(r,c)

Description t = range2time(r) returns the time a signal takes to propagate a
given distance. The propagation is assumed to be two-way, as in a
monostatic radar system.

t = range2time(r,c) specifies the signal propagation speed.

Input
Arguments

r - Signal range
array of nonnegative numbers

Signal range in meters, specified as an array of nonnegative numbers.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

Output
Arguments

t - Propagation time
array of nonnegative numbers

Propagation time in seconds, returned as an array of nonnegative
numbers. The dimensions of tare the same as those of r.

Algorithms The function computes 2*r/c.

4-139

range2time

Examples PRF for Specified Unambiguous Range

Calculate the required PRF for a monostatic radar system so that it can
have a maximum unambiguous range of 15 km.

r = 15e3;
prf = 1/range2time(r);

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also time2range | range2bwphased.FMCWWaveform |

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

4-140

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

rangeangle

Purpose Range and angle calculation

Syntax [tgtrng,tgtang] = rangeangle(POS)
[tgtrng,tgtang] = rangeangle(POS,REFPOS)
[tgtrng,tgtang] = rangeangle(POS,REFPOS,REFAXES)

Description [tgtrng,tgtang] = rangeangle(POS) returns the range, tgtrng, and
direction, tgtang, from the origin to the position, POS.

[tgtrng,tgtang] = rangeangle(POS,REFPOS) returns the range and
angle from the reference position, REFPOS, to the position POS.

[tgtrng,tgtang] = rangeangle(POS,REFPOS,REFAXES) returns the
range and angle of POS in the local coordinate system whose origin is
REFPOS and whose axes are defined in REFAXES.

Input
Arguments

POS

Input position in meters. POS is 3-by-N matrix of rectangular
coordinates in the form [x;y;z]. Each column in POS represents the
coordinates of one position.

REFPOS

Reference position. REFPOS is a 3-by-1 vector of rectangular coordinates
in the form [x;y;z]. REFPOS serves as the origin of the local coordinate
system. Ranges and angles to the columns of POS are measured with
respect to REFPOS.

Default: [0;0;0]

REFAXES

Local coordinate system axes. REFAXES is a 3-by-3 matrix whose
columns define the axes the of the local coordinate system with origin at
REFPOS. Each column in REFAXES specifies the direction of an axis for
the local coordinate system in rectangular coordinates [x; y; z].

Default: [0 1 0;0 0 1;1 0 0]

4-141

rangeangle

Output
Arguments

tgtrng

Range in meters. tgtrng is an 1-by-N vector of ranges from the origin
to the corresponding columns in POS.

tgtang

Azimuth and elevation angles in degrees. tgtang is a 2-by-N matrix
whose columns are the angles in the form [azimuth;elevation] for the
corresponding positions specified in POS.

Examples Find the range and angle of a target located at (1000,2000,50).

TargetLoc = [1e3;2e3;50];
[tgtrng,tgtang] = rangeangle(TargetLoc);

Find the range and angle of a target located at (1000,2000,50) with
respect to a local origin at (100,100,10).

TargetLoc = [1e3;2e3;50];
[tgtrng,tgtang] = rangeangle(TargetLoc,[100; 100; 10]);

Find the range and angle of a target located at (1000,2000,50) with
respect to a local origin at (100,100,10). The local coordinate axes are
[1/sqrt(2) 1/sqrt(2) 0; 1/sqrt(2) -1/sqrt(2) 0; 0 0 1];.

TargetLoc = [1e3;2e3;50];
refaxes =[1/sqrt(2) 1/sqrt(2) 0; 1/sqrt(2) -1/sqrt(2) 0; 0 0 1];
[tgtrng,tgtang] = rangeangle(TargetLoc,[100; 100; 10],refaxes);

See Also global2localcoord | local2globalcoord | azel2uv |
azel2phitheta

Related
Examples

• “Global and Local Coordinate Systems”

4-142

rdcoupling

Purpose Range Doppler coupling

Syntax dr = rdcoupling(fd,slope)
dr = rdcoupling(fd,slope,c)

Description dr = rdcoupling(fd,slope) returns the range offset due to the
Doppler shift in a linear frequency modulated signal. For example, the
signal can be a linear FM pulse or an FMCW signal. slope is the slope
of the linear frequency modulation.

dr = rdcoupling(fd,slope,c) specifies the signal propagation speed.

Input
Arguments

fd - Doppler shift
array of real numbers

Doppler shift, specified as an array of real numbers.

Data Types
double

slope - Slope of linear frequency modulation
nonzero scalar

Slope of linear frequency modulation, specified as a nonzero scalar in
hertz per second.

Data Types
double

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

4-143

rdcoupling

Output
Arguments

dr - Range offset due to Doppler shift

Range offset due to Doppler shift, returned as an array of real numbers.
The dimensions of dr match the dimensions of fd.

Definitions Range Offset

The range offset is the difference between the estimated range and the
true range. The difference arises from coupling between the range and
Doppler shift.

Algorithms The function computes -c*fd/(2*slope).

Examples Range of Target After Correcting for Doppler Shift

Calculate the true range of the target for an FMCW waveform that
sweeps a band of 3 MHz in 2 ms. The dechirped target return has a beat
frequency of 1 kHz. The processing of the target return also indicates
a Doppler shift of 100 Hz.

slope = 30e6/2e-3;
fb = 1e3;
fd = 100;
r = beat2range(fb,slope) - rdcoupling(fd,slope);

References
[1] Barton, David K. Radar System Analysis and Modeling. Boston:
Artech House, 2005.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also beat2range | dechirp | range2beat |
stretchfreq2rngphased.FMCWWaveform | phased.LinearFMWaveform
|

4-144

rdcoupling

Related
Examples

• Automotive Adaptive Cruise Control Using FMCW Technology

4-145

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

rocpfa

Purpose Receiver operating characteristic curves by false-alarm probability

Syntax [Pd,SNR] = rocpfa(Pfa)
[Pd,SNR] = rocpfa(Pfa,Name,Value)
rocpfa(...)

Description [Pd,SNR] = rocpfa(Pfa) returns the single-pulse detection
probabilities, Pd, and required SNR values, SNR, for the false-alarm
probabilities in the row or column vector Pfa. By default, for each
false-alarm probability, the detection probabilities are computed for
101 equally spaced SNR values between 0 and 20 dB. The ROC curve
is constructed assuming a single pulse in coherent receiver with a
nonfluctuating target.

[Pd,SNR] = rocpfa(Pfa,Name,Value) returns detection probabilities
and SNR values with additional options specified by one or more
Name,Value pair arguments.

rocpfa(...) plots the ROC curves.

Input
Arguments

Pfa

False-alarm probabilities in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

MaxSNR

Maximum SNR to include in the ROC calculation.

Default: 20

MinSNR

4-146

rocpfa

Minimum SNR to include in the ROC calculation.

Default: 0

NumPoints

Number of SNR values to use when calculating the ROC curves. The
actual values are equally spaced between MinSNR and MaxSNR.

Default: 101

NumPulses

Number of pulses to integrate when calculating the ROC curves. A
value of 1 indicates no pulse integration.

Default: 1

SignalType

String that specifies the type of received signal or, equivalently,
the probability density functions (PDF) used to compute the
ROC. Valid values are: 'Real', 'NonfluctuatingCoherent',
'NonfluctuatingNoncoherent', 'Swerling1', 'Swerling2',
'Swerling3', and 'Swerling4'. The strings are not case sensitive.

The 'NonfluctuatingCoherent' signal type assumes that the noise in
the received signal is a complex-valued, Gaussian random variable.
This variable has independent zero-mean real and imaginary parts each
with variance σ2/2 under the null hypothesis. In the case of a single
pulse in a coherent receiver with complex white Gaussian noise, the
probability of detection, PD, for a given false-alarm probability, PFA is:

P PD FA= −−1
2

21erfc erfc(())

where erfc and erfc-1 are the complementary error function and that
function’s inverse, and χ is the SNR not expressed in decibels.

For details about the other supported signal types, see [1].

4-147

rocpfa

Default: 'NonfluctuatingCoherent'

Output
Arguments

Pd

Detection probabilities corresponding to the false-alarm probabilities.
For each false-alarm probability in Pfa, Pd contains one column of
detection probabilities.

SNR

Signal-to-noise ratios in a column vector. By default, the SNR values
are 101 equally spaced values between 0 and 20. To change the range of
SNR values, use the optional MinSNR or MaxSNR input argument. To
change the number of SNR values, use the optional NumPoints input
argument.

Examples Plot ROC curves for false-alarm probabilities of 1e–8, 1e–6, and 1e–3,
assuming coherent integration of a single pulse.

Pfa = [1e-8 1e-6 1e-3]; % false-alarm probabilities
rocpfa(Pfa,'SignalType','NonfluctuatingCoherent')

4-148

rocpfa

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, pp 298–336.

See Also npwgnthresh | rocsnr | shnidman

4-149

rocsnr

Purpose Receiver operating characteristic curves by SNR

Syntax [Pd,Pfa] = rocsnr(SNRdB)
[Pd,Pfa] = rocsnr(SNRdB,Name,Value)
rocsnr(...)

Description [Pd,Pfa] = rocsnr(SNRdB) returns the single-pulse detection
probabilities, Pd, and false-alarm probabilities, Pfa, for the SNRs in
the vector SNRdB. By default, for each SNR, the detection probabilities
are computed for 101 false-alarm probabilities between 1e–10 and
1. The false-alarm probabilities are logarithmically equally spaced.
The ROC curve is constructed assuming a coherent receiver with a
nonfluctuating target.

[Pd,Pfa] = rocsnr(SNRdB,Name,Value) returns detection
probabilities and false-alarm probabilities with additional options
specified by one or more Name,Value pair arguments.

rocsnr(...) plots the ROC curves.

Input
Arguments

SNRdB

Signal-to-noise ratios in decibels, in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

MaxPfa

Maximum false-alarm probability to include in the ROC calculation.

Default: 1

MinPfa

4-150

rocsnr

Minimum false-alarm probability to include in the ROC calculation.

Default: 1e-10

NumPoints

Number of false-alarm probabilities to use when calculating the ROC
curves. The actual probability values are logarithmically equally spaced
between MinPfa and MaxPfa.

Default: 101

NumPulses

Number of pulses to integrate when calculating the ROC curves. A
value of 1 indicates no pulse integration.

Default: 1

SignalType

String that specifies the type of received signal or, equivalently,
the probability density functions (PDF) used to compute the
ROC. Valid values are: 'Real', 'NonfluctuatingCoherent',
'NonfluctuatingNoncoherent', 'Swerling1', 'Swerling2',
'Swerling3', and 'Swerling4'.

The 'NonfluctuatingCoherent' signal type assumes that the noise in
the received signal is a complex-valued, Gaussian random variable.
This variable has independent zero-mean real and imaginary parts each
with variance σ2/2 under the null hypothesis. In the case of a single
pulse in a coherent receiver with complex white Gaussian noise, the
probability of detection, PD, for a given false-alarm probability, PFA is:

P PD FA= −−1
2

21erfc erfc(())

where erfc and erfc-1 are the complementary error function and that
function’s inverse, and χ is the SNR not expressed in decibels.

4-151

rocsnr

For details about the other supported signal types, see [1].

Default: 'NonfluctuatingCoherent'

Output
Arguments

Pd

Detection probabilities corresponding to the false-alarm probabilities.
For each SNR in SNRdB, Pd contains one column of detection
probabilities.

Pfa

False-alarm probabilities in a column vector. By default, the
false-alarm probabilities are 101 logarithmically equally spaced values
between 1e–10 and 1. To change the range of probabilities, use the
optional MinPfa or MaxPfa input argument. To change the number of
probabilities, use the optional NumPoints input argument.

Examples Plot ROC curves for coherent integration of a single pulse.

SNRdB = [3 6 9 12]; % SNRs
[Pd,Pfa] = rocsnr(SNRdB,'SignalType','NonfluctuatingCoherent');
semilogx(Pfa,Pd);
grid on; xlabel('P_{fa}'); ylabel('P_d');
legend('SNR 3 dB','SNR 6 dB','SNR 9 dB','SNR 12 dB',...

'location','northwest');
title('Receiver Operating Characteristic (ROC) Curves');

4-152

rocsnr

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, pp 298–336.

See Also npwgnthresh | rocpfa | shnidman

4-153

sensorsig

Purpose Simulate received signal at sensor array

Syntax x = sensorsig(pos,ns,ang)
x = sensorsig(pos,ns,ang,ncov)
x = sensorsig(pos,ns,ang,ncov,scov)
[x,rt] = sensorsig(___)
[x,rt,r] = sensorsig(___)

Description x = sensorsig(pos,ns,ang) simulates the received narrowband plane
wave signals at a sensor array. pos represents the positions of the
array elements, each of which is assumed to be isotropic. ns indicates
the number of snapshots of the simulated signal. ang represents the
incoming directions of each plane wave signal. The plane wave signals
are assumed to be constant-modulus signals with random phases.

x = sensorsig(pos,ns,ang,ncov) describes the noise across all
sensor elements. ncov specifies the noise power or covariance matrix.
The noise is a Gaussian distributed signal.

x = sensorsig(pos,ns,ang,ncov,scov) specifies the power or
covariance matrix for the incoming signals.

[x,rt] = sensorsig(___) also returns the theoretical covariance
matrix of the received signal, using any of the input arguments in the
previous syntaxes.

[x,rt,r] = sensorsig(___) also returns the sample covariance
matrix of the received signal.

Input
Arguments

pos - Positions of elements in sensor array
1-by-N vector | 2-by-N matrix | 3-by-N matrix

Positions of elements in sensor array, specified as an N-column vector
or matrix. The values in the matrix are in units of signal wavelength.

4-154

sensorsig

For example, [0 1 2] describes three elements that are spaced one
signal wavelength apart. N is the number of elements in the array.

Dimensions of pos:

• For a linear array along the y axis, specify the y coordinates of the
elements in a 1-by-N vector.

• For a planar array in the yz plane, specify the y and z coordinates of
the elements in columns of a 2-by-N matrix.

• For an array of arbitrary shape, specify the x, y, and z coordinates of
the elements in columns of a 3-by-N matrix.

Data Types
double

ns - Number of snapshots of simulated signal
positive integer scalar

Number of snapshots of simulated signal, specified as a positive integer
scalar. The function returns this number of samples per array element.

Data Types
double

ang - Directions of incoming plane wave signals
1-by-M vector | 2-by-M matrix

Directions of incoming plane wave signals, specified as an M-column
vector or matrix in degrees. M is the number of incoming signals.

Dimensions of ang:

• If ang is a 2-by-M matrix, each column specifies a direction. Each
column is in the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation
angle must be between –90 and 90 degrees, inclusive.

• If ang is a 1-by-M vector, each entry specifies an azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

4-155

sensorsig

Data Types
double

ncov - Noise characteristics
0 (default) | nonnegative scalar | 1-by-N vector of positive numbers
| N-by-N positive definite matrix

Noise characteristics, specified as a nonnegative scalar, 1-by-N vector of
positive numbers, or N-by-N positive definite matrix.

Dimensions of ncov:

• If ncov is a scalar, it represents the noise power of the white noise
across all receiving sensor elements, in watts. In particular, a value
of 0 indicates that there is no noise.

• If ncov is a 1-by-N vector, each entry represents the noise power
of one of the sensor elements, in watts. The noise is uncorrelated
across sensors.

• If ncov is an N-by-N matrix, it represents the covariance matrix for
the noise across all sensor elements.

Data Types
double

scov - Incoming signal characteristics
1 (default) | positive scalar | 1-by-M vector of positive numbers |
M-by-M positive semidefinite matrix

Incoming signal characteristics, specified as a positive scalar, 1-by-M
vector of positive numbers, or M-by-M positive semidefinite matrix.

Dimensions of scov:

• If scov is a scalar, it represents the power of all incoming signals, in
watts. In this case, all incoming signals are uncorrelated and share
the same power level.

• If scov is a 1-by-M vector, each entry represents the power of one
of the incoming signals, in watts. In this case, all incoming signals
are uncorrelated with each other.

4-156

sensorsig

• If scov is an M-by-M matrix, it represents the covariance matrix for
all incoming signals. The matrix describes the correlation among the
incoming signals. In this case, scov can be real or complex.

Data Types
double

Output
Arguments

x - Received signal
Complex ns-by-N matrix

Received signal at sensor array, returned as a complex ns-by-N matrix.
Each column represents the received signal at the corresponding
element of the array. Each row represents a snapshot.

rt - Theoretical covariance matrix
Complex N-by-N matrix

Theoretical covariance matrix of the received signal, returned as a
complex N-by-N matrix.

r - Sample covariance matrix
Complex N-by-N matrix

Sample covariance matrix of the received signal, returned as a complex
N-by-N matrix. N is the number of array elements. The function
derives this matrix from x.

Note If you specify this output argument, consider making ns greater
than or equal to N. Otherwise, r is rank deficient.

Definitions Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is

4-157

sensorsig

between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Received Signal and Direction-of-Arrival Estimation

Simulate the received signal at an array, and use the data to estimate
the arrival directions.

Create an 8-element uniform linear array whose elements are spaced
half a wavelength apart.

4-158

sensorsig

fc = 3e8;
c = 3e8;
lambda = c/fc;
ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume
there are two signals, coming from azimuth 30 and 60 degrees,
respectively. The noise is white across all array elements, and the
SNR is 10 dB.

x = sensorsig(getElementPosition(ha)/lambda,...
100,[30 60],db2pow(-10));

Use a beamscan spatial spectrum estimator to estimate the arrival
directions, based on the simulated data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'PropagationSpeed',c,'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);

4-159

sensorsig

The plot shows peaks at 30 and 60 degrees.

Signals with Different Power Levels

Simulate receiving two uncorrelated incoming signals that have
different power levels. A vector named scov stores the power levels.

Create an 8-element uniform linear array whose elements are spaced
half a wavelength apart.

fc = 3e8;

4-160

sensorsig

c = 3e8;
lambda = c/fc;
ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume
that one incoming signal originates from 30 degrees azimuth and has
a power of 3 W. A second incoming signal originates from 60 degrees
azimuth and has a power of 1 W. The two signals are not correlated
with each other. The noise is white across all array elements, and the
SNR is 10 dB.

ang = [30 60];
scov = [3 1];
x = sensorsig(getElementPosition(ha)/lambda,...

100,ang,db2pow(-10),scov);

Use a beamscan spatial spectrum estimator to estimate the arrival
directions, based on the simulated data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'PropagationSpeed',c,'OperatingFrequency',fc,...
'DOAOutputPort',true,'NumSignals',2);

[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);

4-161

sensorsig

The plot shows a high peak at 30 degrees and a lower peak at 60 degrees.

Reception of Correlated Signals

Simulate the reception of three signals, two of which are correlated. A
matrix named scov stores the signal covariance matrix.

Create a signal covariance matrix in which the first and third of three
signals are correlated with each other.

scov = [1 0 0.6;...

4-162

sensorsig

0 2 0 ;...
0.6 0 1];

Simulate receiving 100 snapshots of three incoming signals from 30,
40, and 60 degrees azimuth, respectively. The array that receives the
signals is an 8-element uniform linear array whose elements are spaced
half a wavelength apart. The noise is white across all array elements,
and the SNR is 10 dB.

pos = (0:7)*0.5;
ns = 100;
ang = [30 40 60];
ncov = db2pow(-10);
x = sensorsig(pos,ns,ang,ncov,scov);

Theoretical and Empirical Covariance of Received Signal

Simulate receiving a signal at a URA. Compare the signal’s theoretical
covariance, rt, with its sample covariance, r.

Create a 2-by-2 uniform rectangular array whose elements are spaced
1/4 of a wavelength apart.

pos = 0.25 * [0 0 0 0; -1 1 -1 1; -1 -1 1 1];

Define the noise power independently for each of the four array
elements. Each entry in ncov is the noise power of an array element.
This element’s position is the corresponding column in pos. Assume the
noise is uncorrelated across elements.

ncov = db2pow([-9 -10 -10 -11]);

Simulate 100 snapshots of the received signal at the array, and store
the theoretical and empirical covariance matrices. Assume that one
incoming signal originates from 30 degrees azimuth and 10 degrees
elevation. A second incoming signal originates from 50 degrees azimuth
and 0 degrees elevation. The signals have a power of 1 W and are not
correlated with each other.

ns = 100;

4-163

sensorsig

ang1 = [30; 10];
ang2 = [50; 0];
ang = [ang1, ang2];
rng default
[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the magnitudes of the theoretical covariance and sample
covariance.

abs(rt)
abs(r)

ans =

2.1259 1.8181 1.9261 1.9754
1.8181 2.1000 1.5263 1.9261
1.9261 1.5263 2.1000 1.8181
1.9754 1.9261 1.8181 2.0794

ans =

2.2107 1.7961 2.0205 1.9813
1.7961 1.9858 1.5163 1.8384
2.0205 1.5163 2.1762 1.8072
1.9813 1.8384 1.8072 2.0000

Correlation of Noise Among Sensors

Simulate receiving a signal at a ULA, where the noise among different
sensors is correlated.

Create a 4-element uniform linear array whose elements are spaced
half a wavelength apart.

pos = 0.5 * (0:3);

4-164

sensorsig

Define the noise covariance matrix. The value in the (k, j) position
in the ncov matrix is the covariance between the kth and jth array
elements listed in pos.

ncov = 0.1 * [1 0.1 0 0; 0.1 1 0.1 0; 0 0.1 1 0.1; 0 0 0.1 1];

Simulate 100 snapshots of the received signal at the array. Assume
that one incoming signal originates from 60 degrees azimuth.

ns = 100;
ang = 60;
[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the theoretical and sample covariance matrices for the received
signal.

rt,r

rt =

1.1000 -0.9027 - 0.4086i 0.6661 + 0.7458i -0.3033 - 0.9529i

-0.9027 + 0.4086i 1.1000 -0.9027 - 0.4086i 0.6661 + 0.7458i

0.6661 - 0.7458i -0.9027 + 0.4086i 1.1000 -0.9027 - 0.4086i

-0.3033 + 0.9529i 0.6661 - 0.7458i -0.9027 + 0.4086i 1.1000

r =

1.1059 -0.8681 - 0.4116i 0.6550 + 0.7017i -0.3151 - 0.9363i

-0.8681 + 0.4116i 1.0037 -0.8458 - 0.3456i 0.6578 + 0.6750i

0.6550 - 0.7017i -0.8458 + 0.3456i 1.0260 -0.8775 - 0.3753i

-0.3151 + 0.9363i 0.6578 - 0.6750i -0.8775 + 0.3753i 1.0606

See Also phased.SteeringVector |

Related
Examples

• Direction of Arrival Estimation with Beamscan and MVDR

4-165

../examples/direction-of-arrival-estimation-with-beamscan-and-mvdr.html

shnidman

Purpose Required SNR using Shnidman’s equation

Syntax SNR = shnidman(Prob_Detect,Prob_FA)
SNR = shnidman(Prob_Detect,Prob_FA,N)
SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num)

Description SNR = shnidman(Prob_Detect,Prob_FA) returns the required
signal-to-noise ratio in decibels for the specified detection and
false-alarm probabilities using Shnidman’s equation. The SNR is
determined for a single pulse and a Swerling case number of 0, a
nonfluctuating target.

SNR = shnidman(Prob_Detect,Prob_FA,N) returns the required SNR
for a nonfluctuating target based on the noncoherent integration of N
pulses.

SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num) returns
the required SNR for the Swerling case number Swerling_Num.

Definitions Shnidman’s Equation

Shnidman’s equation is a series of equations that yield an estimate of
the SNR required for a specified false-alarm and detection probability.
Like Albersheim’s equation, Shnidman’s equation is applicable to
a single pulse or the noncoherent integration of N pulses. Unlike
Albersheim’s equation, Shnidman’s equation holds for square-law
detectors and is applicable to fluctuating targets. An important
parameter in Shnidman’s equation is the Swerling case number.

Swerling Case Number

The Swerling case numbers characterize the detection problem for
fluctuating pulses in terms of:

• A decorrelation model for the received pulses

• The distribution of scatterers affecting the probability density
function (PDF) of the target radar cross section (RCS).

4-166

shnidman

The Swerling case numbers consider all combinations of two
decorrelation models (scan-to-scan; pulse-to-pulse) and two RCS PDFs
(based on the presence or absence of a dominant scatterer).

Swerling Case Number Description

0 (alternatively designated as 5) Nonfluctuating pulses.

I Scan-to-scan decorrelation.
Rayleigh/exponential PDF–A
number of randomly distributed
scatterers with no dominant
scatterer.

II Pulse-to-pulse decorrelation.
Rayleigh/exponential PDF– A
number of randomly distributed
scatterers with no dominant
scatterer.

III Scan-to-scan decorrelation.
Chi-square PDF with 4 degrees of
freedom. A number of scatterers
with one dominant.

IV Pulse-to-pulse decorrelation.
Chi-square PDF with 4 degrees of
freedom. A number of scatterers
with one dominant.

Examples Find and compare the required single-pulse SNR for Swerling cases I
and III.

Pfa = 1e-6:1e-5:.001; % False-alarm Probabilities
Pd = 0.9; % Probability of detection
SNR_Sw1 = zeros(1,length(Pfa)); % Preallocate space.
SNR_Sw3 = zeros(1,length(Pfa)); % Preallocate space.
for j=1:length(Pfa)

% Swerling case I-No dominant scatterer

4-167

shnidman

SNR_Sw1(j) = shnidman(Pd,Pfa(j),1,1);
% Swerling case III-Dominant scatterer
SNR_Sw3(j) = shnidman(Pd,Pfa(j),1,3);

end
semilogx(Pfa,SNR_Sw1,'k','linewidth',2);
hold on;
semilogx(Pfa,SNR_Sw3,'b','linewidth',2);
axis([1e-6 1e-3 5 25]);
xlabel('False-Alarm Probability');
ylabel('SNR');
title('Required Single-Pulse SNR for P_d=0.9');
legend('Swerling Case I','Swerling Case III',...

'Location','SouthWest');

Note that the presence of a dominant scatterer reduces the required
SNR for the specified detection and false-alarm probabilities.

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, p. 337.

4-168

shnidman

See Also albersheim

4-169

speed2dop

Purpose Convert speed to Doppler shift

Syntax Doppler_shift = speed2dop(radvel,lambda)

Description Doppler_shift = speed2dop(radvel,lambda) returns the one-way
Doppler shift in hertz corresponding to the radial velocity, radvel,
for the wavelength lambda.

Definitions The following equation defines the Doppler shift in hertz based on the
radial velocity of the source relative to the receiver and the carrier
wavelength:

Δf
Vs r= ,

where Vs,r is the radial velocity of the source relative to the receiver in
meters per second and λ is the wavelength in meters.

Examples Calculate the Doppler shift in hertz for a given carrier wavelength and
source speed.

radvel = 35.76; % 35.76 meters per second
f0= 24.15e9; % Frequency of 24.15 GHz
lambda = physconst('LightSpeed')/f0; % wavelength
Doppler_shift = speed2dop(radvel,lambda);
% Doppler shift of 2880.67 Hz

References [1] Rappaport, T. Wireless Communications: Principles & Practices.
Upper Saddle River, NJ: Prentice Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also dop2speed | dopsteeringvec

4-170

stretchfreq2rng

Purpose Convert frequency offset to range

Syntax R = stretchfreq2rng(FREQ,SLOPE,REFRNG)
R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V)

Description R = stretchfreq2rng(FREQ,SLOPE,REFRNG) returns the range
corresponding to the frequency offset FREQ. The computation assumes
you obtained FREQ through stretch processing with a reference range of
REFRNG. The sweeping slope of the linear FM waveform is SLOPE.

R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V) specifies the
propagation speed V.

Input
Arguments

FREQ

Frequency offset in hertz, specified as a scalar or vector.

SLOPE

Sweeping slope of the linear FM waveform, in hertz per second,
specified as a nonzero scalar.

REFRNG

Reference range, in meters, specified as a scalar.

V

Propagation speed, in meters per second, specified as a positive scalar.

Default: Speed of light

Output
Arguments

R

Range in meters. R has the same dimensions as FREQ .

4-171

stretchfreq2rng

Examples Range Corresponding to Frequency Offset

Calculate the range corresponding to a frequency offset of 2 kHz
obtained from stretch processing. Assume the reference range is 5000
m and the linear FM waveform has a sweeping slope of 2 GHz/s.

r = stretchfreq2rng(2e3,2e9,5000);

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also phased.LinearFMWaveform | phased.StretchProcessor | ambgfun
| beat2range | range2beat | rdcoupling

Related
Examples

• Range Estimation Using Stretch Processing

Concepts • “Stretch Processing”

4-172

../examples/range-estimation-using-stretch-processing.html

surfacegamma

Purpose Gamma value for different terrains

Syntax G = surfacegamma(TerrainType)
G = surfacegamma(TerrainType,FREQ)
surfacegamma

Description G = surfacegamma(TerrainType) returns the value for the specified
terrain. The value is for an operating frequency of 10 GHz.

G = surfacegamma(TerrainType,FREQ) specifies the operating
frequency of the system.

surfacegamma displays several terrain types and their corresponding
values. These values are for an operating frequency of 10 GHz.

Input
Arguments

TerrainType

String that describes type of terrain. Valid values are:

• 'sea state 3'

• 'sea state 5'

• 'woods'

• 'metropolitan'

• 'rugged mountain'

• 'farmland'

• 'wooded hill'

• 'flatland'

FREQ

Operating frequency of radar system in hertz. This value can be a
scalar or vector.

Default: 10e9

4-173

surfacegamma

Output
Arguments

G

Value of in decibels, for constant clutter model.

Definitions Gamma

A frequently used model for clutter simulation is the constant
gamma model. This model uses a parameter, , to describe clutter
characteristics of different types of terrain. Values of are derived
from measurements.

Examples Determine the value for a wooded area, and then simulate the clutter
return from the area. Assume the radar system uses a single cosine
pattern antenna element and an operating frequency of 300 MHz.

fc = 300e6;
g = surfacegamma('woods',fc);
hclutter = phased.ConstantGammaClutter('Gamma',g,...

'Sensor',phased.CosineAntennaElement,...
'OperatingFrequency',fc);

x = step(hclutter);
r = (0:numel(x)-1) / (2*hclutter.SampleRate) * ...

hclutter.PropagationSpeed;
plot(r,abs(x));
xlabel('Range (m)'); ylabel('Clutter Magnitude (V)');
title('Clutter Return vs. Range');

4-174

surfacegamma

Algorithms The values for the terrain types 'sea state 3', 'sea state 5',
'woods', 'metropolitan', and 'rugged mountain' are from [2].

The values for the terrain types 'farmland', 'wooded hill', and
'flatland' are from [3].

Measurements provide values of for a system operating at 10 GHz.
The value for a system operating at frequency f is:

4-175

surfacegamma

0

0
5log

f
f

where 0 is the value at frequency f0 = 10 GHz.

References [1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

See Also grazingang | horizonrangephased.ConstantGammaClutter |

4-176

surfclutterrcs

Purpose Surface clutter radar cross section (RCS)

Syntax RCS = surfclutterrcs(NRCS,R,az,el,graz,tau)
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c)

Description RCS = surfclutterrcs(NRCS,R,az,el,graz,tau) returns the radar
cross section (RCS) of a clutter patch that is of range R meters away
from the radar system. az and el are the radar system azimuth and
elevation beamwidths, respectively, corresponding to the clutter patch.
graz is the grazing angle of the clutter patch relative to the radar.
tau is the pulse width of the transmitted signal. The calculation
automatically determines whether the surface clutter area is beam
limited or pulse limited, based on the values of the input arguments.

RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c) specifies the
propagation speed in meters per second.

Tips • You can calculate the clutter-to-noise ratio using the output of this
function as the RCS input argument value in radareqsnr.

Input
Arguments

NRCS

Normalized radar cross section of clutter patch in units of square
meters/square meters.

R

Range of clutter patch from radar system, in meters.

az

Azimuth beamwidth of radar system corresponding to clutter patch,
in degrees.

el

Elevation beamwidth of radar system corresponding to clutter patch,
in degrees.

4-177

surfclutterrcs

graz

Grazing angle of clutter patch relative to radar system, in degrees.

tau

Pulse width of transmitted signal, in seconds.

c

Propagation speed, in meters per second.

Default: Speed of light

Output
Arguments

RCS

Radar cross section of clutter patch.

Examples Calculate the RCS of a clutter patch and estimate the clutter-to-noise
ratio at the receiver. Assume that the patch has an NRCS of 1 m2/m2

and is 1000 m away from the radar system. The azimuth and elevation
beamwidths are 1 degree and 3 degrees, respectively. The grazing angle
is 10 degrees. The pulse width is 10 µs. The radar is operated at a
wavelength of 1 cm with a peak power of 5 kw.

nrcs = 1; rng = 1000;
az = 1; el = 3; graz = 10;
tau = 10e-6; lambda = 0.01; ppow = 5000;
rcs = surfclutterrcs(nrcs,rng,az,el,graz,tau);
cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs);

Algorithms See [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005, pp. 57–63.

See Also grazingang | surfacegamma | radareqsnr | uv2azel |
phitheta2azel

4-178

systemp

Purpose Receiver system-noise temperature

Syntax STEMP = systemp(NF)
STEMP = systemp(NF,REFTEMP)

Description STEMP = systemp(NF) calculates the effective system-noise
temperature, STEMP, in kelvin, based on the noise figure, NF. The
reference temperature is 290 K.

STEMP = systemp(NF,REFTEMP) specifies the reference temperature.

Input
Arguments

NF

Noise figure in decibels. The noise figure is the ratio of the actual output
noise power in a receiver to the noise power output of an ideal receiver.

REFTEMP

Reference temperature in kelvin, specified as a nonnegative scalar. The
output of an ideal receiver has a white noise power spectral density
that is approximately the Boltzmann constant times the reference
temperature in kelvin.

Default: 290

Output
Arguments

STEMP

Effective system-noise temperature in kelvin. The effective system-noise
temperature is REFTEMP*10^(NF/10).

Examples Calculate the system-noise temperature of a receiver with a 300 K
reference temperature and a 5 dB noise figure.

stemp = systemp(5,300);

References [1] Skolnik, M. Introduction to Radar Systems. New York:
McGraw-Hill, 1980.

4-179

systemp

See Also noisepowphased.ReceiverPreamp |

4-180

time2range

Purpose Convert propagation time to propagation distance

Syntax r = time2range(t)
r = time2range(t,c)

Description r = time2range(t) returns the distance a signal propagates during t
seconds. The propagation is assumed to be two-way, as in a monostatic
radar system.

r = time2range(t,c) specifies the signal propagation speed.

Input
Arguments

t - Propagation time
array of positive numbers

Propagation time in seconds, specified as an array of positive numbers.

c - Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per
second.

Data Types
double

Output
Arguments

r - Propagation distance
array of positive numbers

Propagation distance in meters, returned as an array of positive
numbers. The dimensions of r are the same as those of t.

Data Types
double

Algorithms The function computes c*t/2.

4-181

time2range

Examples Minimum Detectable Range for Specified Pulse Width

Calculate the minimum detectable range for a monostatic radar system
where the pulse width is 2 ms.

t = 2e-3;
r = time2range(t);

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York:
McGraw-Hill, 2001.

See Also range2time | range2bwphased.FMCWWaveform |

4-182

unigrid

Purpose Uniform grid

Syntax Grid = unigrid(StartValue,Step,EndValue)
Grid = unigrid(StartValue,Step,EndValue,IntervalType)

Description Grid = unigrid(StartValue,Step,EndValue) returns a uniformly
sampled grid from the closed interval [StartValue,EndValue], starting
from StartValue. Step specifies the step size. This syntax is the same
as calling StartValue:Step:EndValue.

Grid = unigrid(StartValue,Step,EndValue,IntervalType)
specifies whether the interval is closed, or semi-open. Valid values
of IntervalType are '[]' (default), and '[)'. Specifying a closed
interval does not always cause Grid to contain the value EndValue.
The inclusion of EndValue in a closed interval also depends on the
step size Step.

Examples Create a uniform closed interval with a positive step.

Grid = unigrid(0,0.1,1);
% Note that Grid(1)=0 and Grid(end)=1

Create semi-open interval.

Grid = unigrid(0,0.1,1,'[)');
% Grid(1)=0 and Grid(end)=0.9

See Also linspace | val2ind

4-183

uv2azel

Purpose Convert u/v coordinates to azimuth/elevation angles

Syntax AzEl = uv2azel(UV)

Description AzEl = uv2azel(UV) converts the u/v space coordinates to their
corresponding azimuth/elevation angle pairs.

Input
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of
the matrix represents a pair of coordinates in the form [u; v]. Each
coordinate is between –1 and 1, inclusive. Also, each pair must satisfy
u2 + v2≤ 1.

Data Types
double

Output
Arguments

AzEl - Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, returned as a two-row matrix. Each
column of the matrix represents an angle in degrees, in the form
[azimuth; elevation]. The matrix dimensions of AzEl are the same as
those of UV.

Definitions U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

4-184

uv2azel

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy

4-185

uv2azel

plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Conversion of U/V Coordinates

Find the corresponding azimuth/elevation representation for
u = 0.5 and v = 0.

AzEl = uv2azel([0.5; 0]);

4-186

uv2azel

See Also azel2uv

Concepts • “Spherical Coordinates”

4-187

uv2azelpat

Purpose Convert radiation pattern from u/v form to azimuth/elevation form

Syntax pat_azel = uv2azelpat(pat_uv,u,v)
pat_azel = uv2azelpat(pat_uv,u,v,az,el)
[pat_azel,az,el] = uv2azelpat(___)

Description pat_azel = uv2azelpat(pat_uv,u,v) expresses the antenna
radiation pattern pat_azel in azimuth/elevation angle coordinates
instead of u/v space coordinates. pat_uv samples the pattern at u
angles in u and v angles in v. The pat_azel matrix uses a default
grid that covers azimuth values from –90 to 90 degrees and elevation
values from –90 to 90 degrees. In this grid, pat_azel is uniformly
sampled with a step size of 1 for azimuth and elevation. The function
interpolates to estimate the response of the antenna at a given direction.

pat_azel = uv2azelpat(pat_uv,u,v,az,el) uses vectors az and el
to specify the grid at which to sample pat_azel. To avoid interpolation
errors, az should cover the range [–90, 90] and el should cover the
range [–90, 90].

[pat_azel,az,el] = uv2azelpat(___) returns vectors containing the
azimuth and elevation angles at which pat_azel samples the pattern,
using any of the input arguments in the previous syntaxes.

Input
Arguments

pat_uv - Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix.
pat_uv samples the 3-D magnitude pattern in decibels in terms of u
and v coordinates. P is the length of the u vector and Q is the length
of the v vector.

Data Types
double

u - u coordinates
vector of length P

4-188

uv2azelpat

u coordinates at which pat_uv samples the pattern, specified as a vector
of length P. Each coordinate is between –1 and 1.

Data Types
double

v - v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector
of length Q. Each coordinate is between –1 and 1.

Data Types
double

az - Azimuth angles
[-90:90] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as
a vector of length L. Each azimuth angle is in degrees, between –90
and 90. Such azimuth angles are in the hemisphere for which u and v
are defined.

Data Types
double

el - Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as
a vector of length M. Each elevation angle is in degrees, between –90
and 90.

Data Types
double

Output
Arguments

pat_azel - Antenna radiation pattern in azimuth/elevation form
M-by-L matrix

Antenna radiation pattern in azimuth/elevation form, returned as
an M-by-L matrix. pat_azel samples the 3-D magnitude pattern in

4-189

uv2azelpat

decibels, in terms of azimuth and elevation angles. L is the length of
the az vector, and M is the length of the el vector.

az - Azimuth angles
vector of length L

Azimuth angles at which pat_azel samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

el - Elevation angles
vector of length M

Elevation angles at which pat_azel samples the pattern, returned as a
vector of length M. Angles are expressed in degrees.

Definitions U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the

4-190

uv2azelpat

x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Azimuth Angle, Elevation Angle

The azimuth angle is the angle from the positive x-axis toward the
positive y-axis, to the vector’s orthogonal projection onto the xy plane.
The azimuth angle is between –180 and 180 degrees. The elevation
angle is the angle from the vector’s orthogonal projection onto the xy
plane toward the positive z-axis, to the vector. The elevation angle is
between –90 and 90 degrees. These definitions assume the boresight
direction is the positive x-axis.

Note The elevation angle is sometimes defined in the literature as
the angle a vector makes with the positive z-axis. The MATLAB and
Phased Array System Toolbox products do not use this definition.

4-191

uv2azelpat

This figure illustrates the azimuth angle and elevation angle for a
vector that appears as a green solid line. The coordinate system is
relative to the center of a uniform linear array, whose elements appear
as blue circles.

Examples Conversion of Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the angles
spaced 1 degree apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space.

pat_azel = uv2azelpat(pat_uv,u,v);

4-192

uv2azelpat

Plot of Converted Radiation Pattern

Convert a radiation pattern to azimuth/elevation form, with the angles
spaced 1 degree apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space. Store the azimuth and
elevation angles to use them for plotting.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);

Plot the result.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

4-193

uv2azelpat

Conversion of Radiation Pattern Using Specific
Azimuth/Elevation Values

Convert a radiation pattern to azimuth/elevation form, with the angles
spaced 5 degrees apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined and the pattern value is 0.

u = -1:0.01:1;

4-194

uv2azelpat

v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Define the set of azimuth and elevation angles at which to sample the
pattern. Then convert the pattern.

az = -90:5:90;
el = -90:5:90;
pat_azel = uv2azelpat(pat_uv,u,v,az,el);

Plot the result.

H = surf(az,el,pat_azel);
set(H,'LineStyle','none')
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

4-195

uv2azelpat

See Also phased.CustomAntennaElement | uv2azel | azel2uv | azel2uvpat

Concepts • “Spherical Coordinates”

4-196

uv2phitheta

Purpose Convert u/v coordinates to phi/theta angles

Syntax PhiTheta = uv2phitheta(UV)

Description PhiTheta = uv2phitheta(UV) converts the u/v space coordinates to
their corresponding phi/theta angle pairs.

Input
Arguments

UV - Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of
the matrix represents a pair of coordinates in the form [u; v]. Each
coordinate is between –1 and 1, inclusive. Also, each pair must satisfy
u2 + v2≤ 1.

Data Types
double

Output
Arguments

PhiTheta - Phi/theta angle pairs
two-row matrix

Phi and theta angles, returned as a two-row matrix. Each column of
the matrix represents an angle in degrees, in the form [phi; theta]. The
matrix dimensions of PhiTheta are the same as those of UV.

Definitions U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

4-197

uv2phitheta

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Examples Conversion of U/V Coordinates

Find the corresponding φ/θ representation for u = 0.5 and v = 0.

PhiTheta = uv2phitheta([0.5; 0]);

4-198

uv2phitheta

See Also phitheta2uv

Concepts • “Spherical Coordinates”

4-199

uv2phithetapat

Purpose Convert radiation pattern from u/v form to phi/theta form

Syntax pat_phitheta = uv2phithetapat(pat_uv,u,v)
pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta)
[pat_phitheta,phi,theta] = uv2phithetapat(___)

Description pat_phitheta = uv2phithetapat(pat_uv,u,v) expresses the antenna
radiation pattern pat_phitheta in φ/θ angle coordinates instead of
u/v space coordinates. pat_uv samples the pattern at u angles in u
and v angles in v. The pat_phitheta matrix uses a default grid that
covers φ values from 0 to 360 degrees and θ values from 0 to 90 degrees.
In this grid, pat_phitheta is uniformly sampled with a step size of
1 for φ and θ. The function interpolates to estimate the response of
the antenna at a given direction.

pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta) uses
vectors phi and theta to specify the grid at which to sample
pat_phitheta. To avoid interpolation errors, phi should cover the
range [0, 360], and theta should cover the range [0, 90].

[pat_phitheta,phi,theta] = uv2phithetapat(___) returns vectors
containing the φ and θ angles at which pat_phitheta samples the
pattern, using any of the input arguments in the previous syntaxes.

Input
Arguments

pat_uv - Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix.
pat_uv samples the 3-D magnitude pattern in decibels, in terms of u
and v coordinates. P is the length of the u vector, and Q is the length
of the v vector.

Data Types
double

u - u coordinates
vector of length P

4-200

uv2phithetapat

u coordinates at which pat_uv samples the pattern, specified as a vector
of length P. Each coordinate is between –1 and 1.

Data Types
double

v - v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector
of length Q. Each coordinate is between –1 and 1.

Data Types
double

phi - Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a
vector of length L. Each φ angle is in degrees, between 0 and 360.

Data Types
double

theta - Theta angles
[0:90] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as
a vector of length M. Each θ angle is in degrees, between 0 and 90. Such
θ angles are in the hemisphere for which u and v are defined.

Data Types
double

Output
Arguments

pat_phitheta - Antenna radiation pattern in phi/theta form
M-by-L matrix

Antenna radiation pattern in phi/theta form, returned as an M-by-L
matrix. pat_phitheta samples the 3-D magnitude pattern in decibels,
in terms of φ and θ angles. L is the length of the phi vector, and M
is the length of the theta vector.

4-201

uv2phithetapat

phi - Phi angles
vector of length L

Phi angles at which pat_phitheta samples the pattern, returned as a
vector of length L. Angles are expressed in degrees.

theta - Theta angles
vector of length M

Theta angles at which pat_phitheta samples the pattern, returned as
a vector of length M. Angles are expressed in degrees.

Definitions U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi
and theta angles, as follows:

u = sin(θ) cos(φ)

v = sin(θ) sin(φ)

In these expressions, φ and θ are the phi and theta angles, respectively.

The values of u and v satisfy these inequalities:

–1 ≤ u ≤ 1

–1 ≤ v ≤ 1

u2 + v2 ≤ 1

Phi Angle, Theta Angle

The φ angle is the angle from the positive y-axis toward the positive
z-axis, to the vector’s orthogonal projection onto the yz plane. The φ
angle is between 0 and 360 degrees. The θ angle is the angle from the
x-axis toward the yz plane, to the vector itself. The θ angle is between
0 and 180 degrees.

4-202

uv2phithetapat

The figure illustrates φ and θ for a vector that appears as a green solid
line. The coordinate system is relative to the center of a uniform linear
array, whose elements appear as blue circles.

Examples Conversion of Radiation Pattern

Convert a radiation pattern to φ/θ form, with the angles spaced 1
degree apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined, and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to φ/θ space.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

4-203

uv2phithetapat

Plot of Converted Radiation Pattern

Convert a radiation pattern to φ/θ form, with the angles spaced 1
degree apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined, and the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to φ/θ space. Store the φ and θ angles to use them
for plotting.

pat_phitheta = uv2phithetapat(pat_uv,u,v);

Plot the result.

H = surf(phi,theta,pat_phitheta);
set(H,'LineStyle','none')
xlabel('Phi (degrees)');
ylabel('Theta (degrees)');
zlabel('Pattern');

4-204

uv2phithetapat

Conversion of Radiation Pattern Using Specific Phi/Theta
Values

Convert a radiation pattern to φ/θ form, with the angles spaced 5
degrees apart.

Define the pattern in terms of u and v. For values outside the unit
circle, u and v are undefined, and the pattern value is 0.

u = -1:0.01:1;

4-205

uv2phithetapat

v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Define the set of φ and θ angles at which to sample the pattern. Then,
convert the pattern.

phi = 0:5:360;
theta = 0:5:90;
pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta);

Plot the result.

H = surf(phi,theta,pat_phitheta);
set(H,'LineStyle','none')
xlabel('Phi (degrees)');
ylabel('Theta (degrees)');
zlabel('Pattern');

4-206

uv2phithetapat

See Also phased.CustomAntennaElement | uv2phitheta | phitheta2uv |
phitheta2uvpat

Concepts • “Spherical Coordinates”

4-207

val2ind

Purpose Uniform grid index

Syntax Ind = val2ind(Value,Delta)
Ind = val2ind(Value,Delta,GridStartValue)

Description Ind = val2ind(Value,Delta) returns the index of the value Value
in a uniform grid with a spacing between elements of Delta. The
first element of the uniform grid is zero. If Value does not correspond
exactly to an element of the grid, the next element is returned. If Value
is a row vector, Ind is a row vector of the same size.

Ind = val2ind(Value,Delta,GridStartValue) specifies the starting
value of the uniform grid as GridStartValue.

Examples Find index for 0.001 in uniform grid with 1 MHz sampling rate.

Fs = 1e6;
Ind = val2ind(0.001,1/Fs);
% Ind is 1001 because the 1st grid element is zero

Find indices for vector with 1 kHz sampling rate.

Fs = 1e3;
% Construct row vector of values
Values =[0.0095 0.0125 0.0225];
% Values not divisible by 1/Fs
% with nonzero remainder
Ind = val2ind(Values,1/Fs);
% Returns Ind =[11 14 24]

4-208

	toc
	Function Reference
	Array Analysis
	Array Antenna Elements
	Coordinate Systems and Motion Modeling
	Detection
	Environment Models
	Radar Analysis
	Receiver Models
	Space-Time Adaptive Processing
	Transmitter Models
	Utilities
	Waveforms

	System Object Reference
	Array Analysis
	Array Antenna Elements
	Array Microphone Elements
	Array Design
	Beamformers
	Collector
	Coordinate Systems and Motion Modeling
	Detection
	Direction of Arrival (DOA)
	Environment Models
	Jammer Models
	Radiator
	Receiver Models
	Space-Time Adaptive Processing
	Target Models
	Transmitter Models
	Waveforms
	Define New System Objects

	Alphabetical List
	Functions-Alphabetical List

