Phased Array System Toolbox™

Reference

R2012b

) MathWorks

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Phased Array System Toolbox™ Reference
© COPYRIGHT 2011-2012 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

April 2011 Online only Revised for version 1.0 (Release 2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)

September 2012 Online only Revised for Version 1.3 (R2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Function Reference

Array Analysis e 1-2
Array Antenna Elements 1-3
Coordinate Systems and Motion Modeling 1-4
Detection i 1-5
Environment Models 1-6
Radar Analysis 0., 1-7
Receiver Models it 1-8
Space-Time Adaptive Processing 1-9
Transmitter Models 1-10
Utilities i 1-11
Waveforms 1-12

2

Array Analysis e 2-2

iii

iv

Contents

Array Antenna Elements 2-3

Array Microphone Elements 2-4
Array Design i e 2-5
Beamformers i i, 2-6
Collectort 2-7
Coordinate Systems and Motion Modeling 2-8
Detection 2-9
Direction of Arrival (DOA) 2-10
Environment Models 2-11
Jammer Models i, 2-12
Radiator i, 2-13
Receiver Models 2-14
Space-Time Adaptive Processing 2-15
Target Models iinnnn. 2-16
Transmitter Models 2-17
Waveforms 2-18
Define New System Objects 2-19

Alphabetical List

3

Functions-Alphabetical List

q

vi Contents

Function Reference

Array Analysis (p. 1-2)
Array Antenna Elements (p. 1-3)

Coordinate Systems and Motion
Modeling (p. 1-4)

Detection (p. 1-5)

Environment Models (p. 1-6)
Radar Analysis (p. 1-7)
Receiver Models (p. 1-8)

Space-Time Adaptive Processing
(p. 1-9)

Transmitter Models (p. 1-10)
Utilities (p. 1-11)

Waveforms (p. 1-12)

Analyze array response
Model antenna elements

Motion managers

Signal detection and matched
filtering

Modeling signal propagation
Radar equation modeling
Model a phased array receiver

Angle-Doppler processing

Model a pulse transmitter
General utility functions

Waveform analysis

1 Function Reference

Array Analysis

az2broadside Convert azimuth angle to broadside
angle

broadside2az Convert broadside angle to azimuth
angle

Array Antenna Elements

Array Antenna Elements

aperture2gain

azel2phithetapat
azel2uvpat
gain2aperture
phitheta2azelpat
phitheta2uvpat
uv2azelpat

uv2phithetapat

Convert effective aperture to gain

Convert radiation pattern from
azimuth/elevation to phi/theta form

Convert radiation pattern from
azimuth/elevation form to u/v form

Convert gain to effective aperture

Convert radiation pattern from
phi/theta form to azimuth/elevation
form

Convert radiation pattern from
phi/theta form to u/v form

Convert radiation pattern from u/v
form to azimuth/elevation form

Convert radiation pattern from u/v
form to phi/theta form

1-3

1 Function Reference

Coordinate Systems and Motion Modeling

azel2phitheta

azel2uv

dop2speed
global2localcoord
local2globalcoord
phitheta2azel

phitheta2uv

radialspeed
rangeangle
speed2dop

uv2azel

uv2phitheta

Convert angles from
azimuth/elevation form to phi/theta
form

Convert azimuth/elevation angles to
u/v coordinates

Convert Doppler shift to speed
Convert global to local coordinates
Convert local to global coordinates

Convert angles from phi/theta form
to azimuth/elevation form

Convert phi/theta angles to u/v
coordinates

Relative radial speed
Range and angle calculation
Convert speed to Doppler shift

Convert u/v coordinates to
azimuth/elevation angles

Convert u/v coordinates to phi/theta
angles

Detection

Detection

albersheim Required SNR using Albersheim’s
equation

npwgnthresh Detection SNR threshold for signal
in white Gaussian noise

pulsint Pulse integration

rocpfa Receiver operating characteristic
curves by false-alarm probability

rocsnr Receiver operating characteristic
curves by SNR

shnidman Required SNR using Shnidman’s
equation

stretchfreq2rng Convert frequency offset to range

1-5

1 Function Reference

Environment Models

billingsleyicm Billingsley’s intrinsic clutter motion
(ICM) model

depressionang Depression angle of surface target

effearthradius Effective earth radius

fspl Free space path loss

grazingang Grazing angle of surface target

horizonrange Horizon range

surfacegamma Gamma value for different terrains

surfclutterrcs Surface clutter radar cross section
(RCS)

Radar Analysis

Radar Analysis

radaregpow

radareqrng

radareqsnr

Peak power estimate from radar
equation

Maximum theoretical range estimate

SNR estimate from radar equation

1-7

1 Function Reference

Receiver Models

noisepow Receiver noise power

systemp Receiver system-noise temperature

1-8

Space-Time Adaptive Processing

Space-Time Adaptive Processing

dopsteeringvec Doppler steering vector

1-9

1 Function Reference

Transmitter Models

1-10

Utilities

Utilities

delayseq
physconst
unigrid

val2ind

Delay or advance sequence
Physical constants
Uniform grid

Uniform grid index

1-11

1 Function Reference

Waveforms

ambgfun Ambiguity function

1-12

System Object Reference

Array Analysis (p. 2-2)

Array Antenna Elements (p. 2-3)
Array Microphone Elements (p. 2-4)
Array Design (p. 2-5)

Beamformers (p. 2-6)

Collector (p. 2-7)

Coordinate Systems and Motion
Modeling (p. 2-8)

Detection (p. 2-9)

Direction of Arrival (DOA) (p. 2-10)
Environment Models (p. 2-11)
Jammer Models (p. 2-12)

Radiator (p. 2-13)

Receiver Models (p. 2-14)

Space-Time Adaptive Processing
(p. 2-15)

Target Models (p. 2-16)
Transmitter Models (p. 2-17)
Waveforms (p. 2-18)

Define New System Objects (p. 2-19)

Analyze array response

Model antenna elements

Model microphone elements

Design array geometries
Beamforming

Model incident waveforms at arrays

Motion managers

Signal detection and matched
filtering

DOA estimation

Model propagation environments
Model signal jammers

Model signal radiation

Model a phased array receiver

Implement space-time adaptive
processing

Model targets
Model a pulse transmitter
Construct pulse waveforms

Create new kinds of System objects

2 System Obiject Reference

2-2

Array Analysis

phased.ArrayGain
phased.ArrayResponse
phased.ElementDelay

phased.SteeringVector

Sensor array gain
Sensor array response

Sensor array element delay
estimator

Sensor array steering vector

Array Antenna Elements

Array Antenna Elements

phased.CosineAntennaElement Cosine antenna
phased.CustomAntennaElement Custom antenna
phased.IsotropicAntennaElement Isotropic antenna

2-3

2 System Obiject Reference

Array Microphone Elements

phased.CustomMicrophoneElement Custom microphone

phased.OmnidirectionalMicrophoneEletemtidirectional microphone

2-4

Array Design

Array Design

phased.ConformalArray
phased.PartitionedArray

phased.ReplicatedSubarray

phased. ULA
phased. URA

Conformal array

Phased array partitioned into
subarrays

Phased array formed by replicated
subarrays

Uniform linear array

Uniform rectangular array

2-5

2 System Obiject Reference

2-6

Beamformers

phased.FrostBeamformer
phased. LCMVBeamformer
phased. MVDRBeamformer

phased.PhaseShiftBeamformer

Frost beamformer
Narrowband LCMV beamformer

Narrowband MVDR (Capon)
beamformer

Narrowband phase shift beamformer

phased.SubbandPhaseShiftBeamformeB8ubband phase shift beamformer

phased.TimeDelayBeamformer

Time delay beamformer

phased.TimeDelayLCMVBeamformer Time delay LCMV beamformer

Collector

Collector

phased.Collector Narrowband signal collector

phased.WidebandCollector Wideband signal collector

2-7

2 System Obiject Reference

Coordinate Systems and Motion Modeling

phased.Platform Motion platform

2-8

Detection

Detection

phased.CFARDetector

phased.MatchedFilter
phased.StretchProcessor

phased.TimeVaryingGain

Constant false alarm rate (CFAR)
detector

Matched filter

Stretch processor for linear FM
waveform

Time varying gain control

2-9

2 System Obiject Reference

Direction of Arrival (DOA)

2-10

phased.BeamscanEstimator

phased.BeamscanEstimator2D

phased.BeamspaceESPRITEstimator

phased. ESPRITEstimator

phased. MVDREstimator

phased. MVDREstimator2D

phased.RootMUSICEstimator

phased.RootWSFEstimator

Beamscan spatial spectrum
estimator for ULA

2-D beamscan spatial spectrum
estimator

Beamspace ESPRIT direction of
arrival (DOA) estimator

ESPRIT direction of arrival (DOA)
estimator

MVDR (Capon) spatial spectrum
estimator for ULA

2-D MVDR (Capon) spatial spectrum
estimator

Root MUSIC direction of arrival
(DOA) estimator

Root WSF direction of arrival (DOA)
estimator

phased.SumDifferenceMonopulseTrackenm and difference monopulse for

ULA

phased.SumDifferenceMonopulseTrack8n2Dand difference monopulse for

URA

Environment Models

Environment Models

phased.ConstantGammaClutter Constant gamma clutter simulation
phased.FreeSpace Free space environment

phased.gpu.ConstantGammaClutter Constant gamma clutter simulation
on GPU

2-11

2 System Obiject Reference

Jammer Models

phased.BarrageJammer Barrage jammer

2-12

Radiator

Radiator

phased.Radiator Narrowband signal radiator

2-13

2 System Obiject Reference

Receiver Models

phased.ReceiverPreamp Receiver preamp

2-14

Space-Time Adaptive Processing

Space-Time Adaptive Processing

phased. ADPCACanceller Adaptive DPCA (ADPCA) pulse
canceller

phased.AngleDopplerResponse Angle-Doppler response

phased. DPCACanceller Displaced phase center array
(DPCA) pulse canceller

phased.STAPSMIBeamformer Sample matrix inversion (SMI)
beamformer

2-15

2 System Obiject Reference

Target Models

phased.RadarTarget Radar target

2-16

Transmitter Models

Transmitter Models

phased.Transmitter Transmitter

2-17

2 System Obiject Reference

Waveforms
phased. FMCWWaveform FMCW Waveform
phased.LinearFMWaveform Linear FM pulse waveform
phased.PhaseCodedWaveform Phase-coded pulse waveform
phased.RectangularWaveform Rectangular pulse waveform
phased.SteppedFMWaveform Stepped FM pulse waveform

2-18

Define New System Obijects

Define New System Obijects

getDiscreteStateImpl Discrete state property values

getNumInputsImpl Number of input arguments passed
to step and setup methods

getNumOutputsImpl Number of outputs returned by
method

isDonelmpl End-of-data flag

isInactivePropertylmpl Active or inactive flag for properties

loadObjectImpl Load saved System object from MAT
file

matlab.System Base class for System objects

matlab.system.mixin.FiniteSource Finite source mixin class

matlab.system.StringSet Set of valid string values

processTunedPropertiesImpl Action when tunable properties
change

releaselmpl Release resources

resetImpl Reset System object™ states

saveObjectImpl Save System object in MAT file

setProperties Set property values from name-value
pair inputs

setupImpl Initialize System object

stepImpl System output and state update
equations

validateInputsImpl Validate inputs to step method

validatePropertiesImpl Validate property values

2-19

2 System Obiject Reference

2-20

Alphabetical List

matlab.System

3-2

Purpose

Description

Methods

Base class for System objects

matlab.System is the base class for System objects. In your class
definition file, you must subclass your object from this base class (or
from another class that derives from this base class). Subclassing
allows you to use the implementation and service methods provided by
this base class to build your object. You use this syntax as the first line
of your class definition file to directly inherit from the matlab.System
base class, where ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note You must set Access=protected for each matlab.System

method you use in your code.

getDiscreteStateImpl
getNumInputsImpl

getNumOutputsImpl

isInactivePropertylmpl

loadObjectImpl

processTunedPropertiesImpl

releaseImpl
resetImpl

saveObjectImpl

Discrete state property values

Number of input arguments
passed to step and setup methods

Number of outputs returned by
method

Active or inactive flag for
properties

Load saved System object from
MAT file

Action when tunable properties
change

Release resources
Reset System object states
Save System object in MAT file

matlab.System

setProperties Set property values from
name-value pair inputs

setupImpl Initialize System object

stepImpl System output and state update
equations

validateInputsImpl Validate inputs to step method

validatePropertiesImpl Validate property values

Atiributes In addition to the attributes available for MATLAB® objects, you can

apply the following attributes to any property of a custom System object.

Nontunable

Logical

PositiveInteger

DiscreteState

After an object 1s locked (after step or setup
has been called), use Nontunable to prevent
a user from changing that property value.
By default, all properties are tunable. The
Nontunable attribute is useful to lock a
property that has side effects when changed.
This attribute is also useful for locking a
property value assumed to be constant during
processing. You should always specifiy
properties that affect the number of input or
output ports as Nontunable.

Use Logical to limit the property value to a
logical, scalar value. Any scalar value that can
be converted to a logical is also valid, such as 0
or 1.

Use PositivelInteger to limit the property
value to a positive integer value.

Use DiscreteState to mark a property so it
will display its state value when you use the
getDiscreteState method.

3-3

matlab.System

To learn more about attributes, see “Property Attributes” in the
MATLAB Object-Oriented Programming documentation.

Examples Create a simple System object, AddOne, which subclasses from
matlab.System. You place this code into a MATLAB file, AddOne . m.

classdef AddOne < matlab.System
%ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method.
function y = stepImpl(~,x)
y = x +1;
end
end
end

To use this object, create an instance of AddOne, provide an input, and
use the step method:

hAdder = AddOne;

X = 1;
y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which
you define in your class definition file.

properties (Nontunable)

InitialValue
end

| | matlab.system.StringSet | | | |
matlab.system.mixin.FiniteSource

How To * “Object-Oriented Programming”

3-4

matlab.System

Class Attributes
Property Attributes
“Method Attributes”

“Define Basic System Objects”

“Define Property Attributes”

3-5

matlab.System.getDiscreteStatelmpl

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Examples

3-6

Discrete state property values

s = getDiscreteStateImpl(obj)

S getDiscreteStateImpl(obj) returns a struct s of state values.
The field names of the struct are the object’s DiscreteState property
names. To restrict or change the values returned by getDiscreteState
method, you can override this getDiscreteStateImpl method. End
users cannot specify scaled double fi objects as inputs to discrete state
properties.

getDiscreteStatesImpl is called by the getDiscreteState method,
which is called by the setup method.

Note You must set Access=protected for this method.

obj
System object handle

Struct of state values.

methods (Access=protected)
function s = getDiscreteState(obj)
end

end

| | setupImpl

“Define Property Attributes”

matlab.System.getNuminputsimpl

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Examples

Number of input arguments passed to step and setup methods

num = getNumInputSImpl(Obj)

num = getNumInputsImpl(obj) returns the number of inputs num
(excluding the System object handle) expected by the step method. The
default implementation returns 1, which requires one input from the
user, in addition to the System object handle. To specify a value other
than 1, you must use include the getNumInputsImpl method in your
class definition file.

getNumInputsImpl is called by the getNumInputs method and by the
setup method if the number of inputs has not been determined already.

Note You must set Access=protected for this method.

obj
System object handle

Number of inputs expected by the step method for the specified
object.

Default: 1

Specify the number of inputs (2, in this case) expected by the step
method.

methods (Access=protected)
function num = getNumInputsImpl(obj)
num = 2;
end
end

matlab.System.getNuminputsimpl

Specify that the step method will not accept any inputs.

methods (Access=protected)
function num = getNumInputsImpl(~)
num = 0;
end
end

| | setupImpl | | | | stepImpl | | | | getNumOutputsImpl

+ “Change Number of Step Inputs or Outputs”

matlab.System.getNumOutputsimpl

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Examples

Number of outputs returned by step method
num = getNumOutputsImpl (obj)

num = getNumOutputsImpl (obj) returns the number of outputs
from the step method. The default implementation returns 1
output. To specify a value other than 1, you must use include the
getNumOutputsImpl method in your class definition file.

getNumOutputsImpl is called by the getNumOutputs method, if the
number of outputs has not been determined already.

Note You must set Access=protected for this method.

obj
System object handle

Number of outputs to be returned by the step method for the
specified object.

Specify the number of outputs (2, in this case) returned from the step
method.

methods (Access=protected)
function num = getNumOutputsImpl(obj)
num = 2;
end
end

Specify that the step method does not return any outputs.

methods (Access=protected)

matlab.System.getNumOutputsimpl

function num = getNumOutputsImpl(~)
num = 0;
end
end

| | stepImpl | | | | getNumInputsImpl | | | | setupImpl

+ “Change Number of Step Inputs or Outputs”

3-10

matlab.System.islnactivePropertylmpl

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Examples

Active or inactive flag for properties
flag = isInactivePropertyImpl(obj,prop)

flag = isInactivePropertyImpl(obj,prop) specifies whether a
property is inactive for the current object configuration. An inactive
property is a property that is not relevant to the object, given the values
of other properties. Inactive properties are not shown if you use the
disp method to display object properties. If you attempt to use public
access to directly access or use get or set on an inactive property, a
warning occurs.

isInactiveProperty is called by the disp method and by the get and
set methods.

Note You must set Access=protected for this method.

obj
System object handle
prop

Property name

flag

Logical scalar value indicating whether the input property prop is
inactive for the current object configuration.

Display the InitialValue property only when the
UseRandomInitialValue property value is false.

methods (Access=protected)
function flag = isInactivePropertyImpl(obj,propertyName)
if strcmp(propertyName, 'InitialValue')
flag = obj.UseRandomInitialValue;

3-11

matlab.System.islnactivePropertylmpl

else
flag = false;
end
end
end
| | setProperties

+ “Hide Inactive Properties”

3-12

matlab.System.loadObjectimpl

Purpose
Syntax

Description

Input
Arguments

Examples

How To

Load saved System object from MAT file
loadObjectImpl(obj)

loadObjectImpl(obj) loads a saved System object, obj, from a
MAT file. Your loadObjectImpl method should correspond to your
saveObjectImpl method to ensure that all saved properties and data
are loaded.

obj
System object handle

Load a saved System object. In this case, the object contains a child
object, protected and private properties, and a discrete state.

methods (Access=protected)
function loadObjectImpl(obj, s, wasLocked)
% Load child System objects
obj.child = matlab.System.loadObject(s.child);

% Save protected & private properties
obj.protected = s.protected;
obj.pdependentprop = s.pdependentprop;

% Save state only if locked when saved
if wasLocked

obj.state = s.state;
end

% Call base class method
loadObjectImpl@matlab.System(obj,s,wasLocked);

end
end

* “Load System Object”

3-13

matlab.System.loadObjectimpl

+ “Save System Object”

3-14

matlab.System.processTunedPropertiesimpl

Purpose
Syntax

Description

Tips

Input
Arguments

Examples

Action when tunable properties change
processTunedPropertiesImpl(obj)

processTunedPropertiesImpl(obj) specifies the actions to perform
when one or more tunable property values change. This method is
called as part of the next call to the step method after a tunable
property value changes. A property is tunable only if its Nontunable
attribute is false, which is the default.

processTunedPropertiesImpl is called by the step method.

Note You must set Access=protected for this method.

Use this method when a tunable property affects a different property
value. For example, two property values determine when to calculate
a lookup table. You want to perform that calculation when either
property changes. You also want the calculation to be done only once if
both properties change before the next call to the step method.

obj
System object handle

Use processTunedPropertiesImpl to recalculate the lookup table if
the value of either the NumNotes or MiddleC property changes.

methods (Access=protected)
function processTunedPropertiesImpl(obj)
% Generate a lookup table of note frequencies
obj.pLookupTable = obj.MiddleC * (1+log(1:obj.NumNotes)/log(12)
end
end

| | validatePropertiesImpl | | | | setProperties

3-15

matlab.System.processTunedPropertiesimpl

+ “Validate Property and Input Values”

+ “Define Property Attributes”

3-16

matlab.System.releaselmpl

Purpose
Syntax

Description

Input
Arguments

Examples

Release resources
releaseImpl(obj)

releaseImpl(obj) releases any resources used by the System object,
such as file handles. This method also performs any necessary
cleanup tasks. To release resources for a System object, you must use
releaselImpl instead of a destructor.

releaseImpl is called by the release method. releaseImpl is also
called when the object is deleted or cleared from memory, or when all
references to the object have gone out of scope.

Note You must set Access=protected for this method.

obj
System object handle
Use the releaseImpl method to close a file.

methods (Access=protected)
function releaseImpl(obj)
fclose(obj.pFilelID);
end
end

| | resetImpl

+ “Release System Object Resources”

3-17

matlab.System.resetimpl

Purpose
Syntax

Description

Input
Arguments

Examples

3-18

Reset System object states
resetImpl(obj)

resetImpl(obj) defines the state reset equations for the System object.
Typically you reset the states to a set of initial values.

resetImpl is called by the reset method. It is also called by the setup
method, after the setupImpl method.

Note You must set Access=protected for this method.

obj
System object handle
Use the reset method to reset the counter pCount property to zero.

methods (Access=protected)
function resetImpl(obj)
obj.pCount = 0;
end
end

| | releaseImpl

+ “Reset Algorithm State”

matlab.System.saveObjectimpl

Purpose
Syntax

Description

Input
Arguments

Examples

Save System object in MAT file
saveObjectImpl(obj)

saveObjectImpl(obj) defines what System object 0bj property and
state values are saved in a MAT file when a user calls save on that
object. save calls saveObject, which then calls saveObjectImpl. If
you do not define a saveObjectImpl method for your System object
class, only public properties are saved. To save any private or protected
properties or state information, you must define a saveObjectImpl in
your class definition file.

You should save the state of an object only if the object is locked. When
the user loads that saved object, it loads in that locked state.

To save child object information, you use the associated saveObject
method within the saveObjectImpl method.

End users can use load, which calls 1loadObjectImpl to load a System
object into their workspace.

obj
System object handle

Define what is saved for the System object. Call the base class version
of saveObjectImpl to save public properties. Then, save any child
System objects and any protected and private propertes. Finally, save
the state, if the object is locked.

methods (Access=protected)

function s = saveObjectImpl(obj)
s = saveObjectImpl@matlab.System(obj);
s.child = matlab.System.saveObject(obj.child);
s.protected = obj.protected;
s.pdependentprop = obj.pdependentprop;
if islLocked(obj)

s.state = obj.state;

3-19

matlab.System.saveObjectimpl

end
end
end

How To + “Save System Object”
* “Load System Object”

3-20

matlab.System.setProperties

Purpose Set property values from name-value pair inputs
Syntax setProperties(obj,numargs,namel,valuel,name2,value2,...)
setProperties(obj,numargs,argil,...,argm,namel,valuel,name2,
value2,...)
Description setProperties(obj,numargs,namel,valuel,name2,value2,...)

provides the name-value pair inputs to the System object constructor.
Use this syntax if every input must specify both name and value.

Note To allow standard name-value pair handling at construction,
define setProperties for your System object.

setProperties(obj,numargs,argl,...,argm,namel,valuei,name2,value2,...
provides the value-only inputs, followed by the name-value pair inputs

to the System object during object construction. Use this syntax if you

want to allow users to specify one or more inputs by their values only.

Input obj
Arguments System object handle
numargs

Number of inputs passed in by the object constructor
name*

Name of property
value*

Value of the property
arg*

Value of property (for value-only input to the object constructor)

3-21

matlab.System.setProperties

3-22

Examples

Set up the object so users can specify property values via name-value
pairs when constructing the object.

methods
function obj = MyFile(varargin)
setProperties(obj,nargin,varargin{:});
end
end

+ “Set Property Values at Construction Time”

matlab.System.setuplmpl

Purpose
Syntax

Description

Tips

Input
Arguments

Examples

Initialize System object
setupImpl(obj,inputl, input2,...)

setupImpl(obj,inputi, input2,...) sets up a System object. To
acquire resources for a System object, you must use setupImpl instead
of a constructor. setupImpl executes the first time the step method is
called on an object after that object has been created. It also executes
the next time step is called after an object has been released. . The
number of inputs must match the number of inputs defined in the
getNumInputsImpl method. You pass the inputs into setupImpl to use
the input sizes, datatypes, etc. in the one-time calculations.

setupImpl is called by the setup method, which is done automatically
as the first subtask of the step method on an unlocked System object.

Note You must set Access=protected for this method.

To validate properties or inputs use the validatePropertiesImpl,
validateInputsImpl, or setProperties methods. Do not include
validation in setupImpl.
obj

System object handle
input*

Inputs to the setup method

Open a file for writing using the setupImpl method.

methods (Access=protected)
function setupImpl(obj,data)
obj.pFileID = fopen(obj.Filename, 'wb');
if obj.pFileID < 0O

3-23

matlab.System.setuplmpl

error('Opening the file failed');
end
end
end

| | validatePropertiesImpl | | | | validateInputsImpl | | |
setProperties

+ “Initialize Properties and Setup One-Time Calculations”

+ “Set Property Values at Construction Time”

3-24

matlab.System.steplmpl

Purpose
Syntax

Description

Tips

Input
Arguments

Output
Arguments

Examples

System output and state update equations
[outputl,output2,...] = stepImpl(obj,inputi,input2,...)

[output1,output2,...] = stepImpl(obj,inputi,input2,...)
defines the algorithm to execute when you call the step method on
the specified object obj. The step method calculates the outputs and
updates the object’s state values using the inputs, properties, and state
update equations.

stepImpl is called by the step method.

Note You must set Access=protected for this method.

The number of input arguments and output arguments must match the
values returned by the getNumInputsImpl and getNumOutputsImpl
methods, respectively
obj

System object handle
input*

Inputs to the step method

output
Output returned from the step method.
Use the stepImpl method to increment two numbers.

methods (Access=protected)
function [y1,y2] = stepImpl(obj,x1,x2)

yl = x1 + 1;
y2 = x2 + 1;
end

3-25

matlab.System.stepimpl

| | getNumInputsImpl | | | | getNumOutputsImpl | | | |
validateInputsImpl

* “Define Basic System Objects”

+ “Change Number of Step Inputs or Outputs”

3-26

matlab.System.validatelnputsimpl

Purpose Validate inputs to step method
Syntax validateInputsImpl(obj,inputi,input2,...)
Description validateInputsImpl(obj,input1,input2,...) validates inputs to

the step method at the beginning of initialization Validation includes
checking data types, complexity, cross-input validation, and validity of
inputs controlled by a property value.

validateInputsImpl is called by the setup method before setupImpl.
validateInputsImpl executes only once.

Note You must set Access=protected for this method.

Input obj
Arguments System object handle
input*
Inputs to the setup method
Examples Validate that the input is numeric.

methods (Access=protected)
function validateInputsImpl(~,x)
if ~isnumeric(x)
error('Input must be numeric');
end
end
end

| | validatePropertiesImpl | | | | setupImpl

3-27

matlab.System.validatelnputsimpl

+ “Validate Property and Input Values”

3-28

matlab.System.validatePropertiesimpl

Purpose
Syntax

Description

Input
Arguments

Examples

Validate property values
validatePropertiesImpl(obj)

validatePropertiesImpl(obj) validates interdependent or
interrelated property values at the beginning of object initialization,
such as checking that the dependent or related inputs are the same size.

validatePropertiesImpl is the first method called by the setup
method. validatePropertiesImpl also is called before the
processTunablePropertiesImpl method.

Note You must set Access=protected for this method.

obj
System object handle

Validate that the useIncrement property is true and that the value of
the increment property is greater than zero.

methods (Access=protected)
function validatePropertiesImpl(obj)
if obj.uselncrement && obj.increment < O
error('The increment value must be positive');
end
end
end

| | processTunedPropertiesImpl | | | | setupImpl | | | |
validateInputsImpl

“Validate Property and Input Values”

3-29

matlab.system.mixin.FiniteSource

Purpose Finite source mixin class

Description matlab.system.mixin.FiniteSource is a class that defines the isDone
method, which reports the state of a finite data source, such as an audio
file.

To use this method, you must subclass from this class in addition to
the matlab.System base class. You use the following syntax as the
first line of your class definition file, where ObjectName is the name
of your object:

classdef ObjectName < matlab.System &...
matlab.system.mixin.FiniteSource

Methods isDoneImpl End-of-data flag
| | matlab.System

+ “Define Finite Source Objects”

How To * “Object-Oriented Programming”
Class Attributes
* Property Attributes

3-30

matlab.system.mixin.FiniteSource.isDonelmpl

Purpose End-of-data flag
Syntax status = isDoneImpl(obj)
Description status = isDoneImpl(obj) indicates if an end-of-data condition has

occurred. The isDone method should return false when data from a
finite source has been exhausted, typically by having read and output
all data from the source. You should also define the result of future
reads from an exhausted source in the isDoneImpl method.

isDonelImpl is called by the isDone method.

Input obj

Arguments System object handle

Output status

Arguments Logical value, true or false, that indicates if an end-of-data

condition has occurred or not, respectively.

Examples Set up isDoneImpl so the isDone method checks whether the object has
completed eight iterations.

methods (Access=private)
function bdone = isDoneImpl(obj)
bdone = obj.NumIters==8;
end
end

| | matlab.system.mixin.FiniteSource

+ “Define Finite Source Objects”

3-31

matlab.system.StringSet

3-32

Purpose

Description

Examples

Set of valid string values

matlab.system.StringSet defines a list of valid string values for a
property. This class validates the string in the property and enables tab
completion for the property value. A StringSet allows only predefined or
customized strings as values for the property.

A StringSet uses two linked properties, which you must define in the
same class. One is a public property that contains the current string
value. This public property is displayed to the user. The other property
is a hidden property that contains the list of all possible string values.
This hidden property should also have the transient attribute so its
value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

® The string property that holds the current string can have any name.

® The property that holds the StringSet must use the same name as
the string property with the suffix “Set” appended to it. The string
set property is an instance of the matlab.system.StringSet class.

® Valid strings, defined in the StringSet, must be declared using a cell
array. The cell array cannot be empty nor can it have any empty
strings. Valid strings must be unique and are case-insensitive.

® The string property must be set to a valid StringSet value.

Set the string property, Flavor, and the StringSet property,
FlavorSet, in this example.

properties
Flavor='Chocolate';
end

properties (Hidden,Transient)
FlavorSet =
matlab.system.StringSet({'Vanilla', 'Chocolate'});
end

matlab.system.StringSet

| | matlab.System

How To + “Object-Oriented Programming”
+ Class Attributes
* Property Attributes

+ “Limit Property Values to Finite String Set”

3-33

phased.ADPCACanceller

Purpose

Description

Construction

Properties

3-34

Adaptive DPCA (ADPCA) pulse canceller

The ADPCACanceller object implements an adaptive displaced phase
center array pulse canceller.

To compute the output signal of the space time pulse canceller:

1 Define and set up your ADPCA pulse canceller. See “Construction”
on page 3-34.

2 Call step to execute the ADPCA algorithm according to the properties
of phased.ADPCACanceller. The behavior of step is specific to each
object in the toolbox.

H = phased.ADPCACanceller creates an adaptive displaced phase
center array (ADPCA) canceller System object, H. This object performs
two-pulse ADPCA processing on the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Namei,Valuel,...,NameN,ValueN). See “Properties” on page 3-34 for the
list of available property names.

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

phased.ADPCACanceller

Default: Speed of light

OperatingFrequency

PRF

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal
in hertz as a scalar.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor
comes from the Direction property of this object or from an
input argument in step. Values of this property are:

'"Property' The Direction property of this object specifies the
targeting direction.
"Input port' An input argument in each invocation of step specifies

the targeting direction.

Default: 'Property’

Direction

Receiving mainlobe direction (degrees)

3-35

phased.ADPCACanceller

Specify the receiving mainlobe direction of the receiving sensor
array as a column vector of length 2. The direction is specified in
the format of [AzimuthAngle; ElevationAngle] (in degrees).
Azimuth angle should be between —180 and 180. Elevation angle
should be between —90 and 90. This property applies when you
set the DirectionSource property to 'Property'.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor
comes from the Doppler property of this object or from an input
argument in step. Values of this property are:

'"Property' The Doppler property of this object specifies the
Doppler.
"Input port' An input argument in each invocation of step specifies

the Doppler.

3-36

Default: 'Property’

Doppler

Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar.
This property applies when you set the DopplerSource property
to 'Property’.

Default: 0

WeightsOutputPort

Output processing weights

phased.ADPCACanceller

To obtain the weights used in the STAP processor, set this
property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput
Output pre-Doppler result

Set this property to true to output the processing result before
applying the Doppler filtering. Set this property to false to
output the processing result after the Doppler filtering.

Default: false

NumGuardCells
Number of guarding cells

Specify the number of guard cells used in the training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells
Number of training cells

Specify the number of training cells used in the training as an
even integer. Whenever possible, the training cells are equally
divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

3-37

phased.ADPCACanceller

3-38

Methods

Examples

clone Create ADPCA object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

release Allow property value and input
characteristics changes

step Perform ADPCA processing on
input data

Process the data cube using an ADPCA processor. The weights are
calculated for the 71st cell of a collected data cube. The look direction
is [0 0] degrees and the Doppler is 12980 Hz.

load STAPExampleData; % load radar data cube

Hs = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...
'"PRF',STAPEX_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
"NumTrainingCells',100,...
'WeightsOutputPort',true,...
'‘DirectionSource', 'Input port',...
'DopplerSource', 'Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

Hresp = phased.AngleDopplerResponse(...
'SensorArray',Hs.SensorArray, ...
'OperatingFrequency',Hs.OperatingFrequency,...
'"PRF',Hs.PRF,...
'PropagationSpeed',Hs.PropagationSpeed);

plotResponse(Hresp,w);

phased.ADPCACanceller

References

See Also

B Figure1 =
File Edit View Inset Tools Desktop Window Help E
DS AL0DEL- 208 nD
10t Angle-Doppler Response Pattemn
1.5
10
! 0
. +4-10
i 0.5
= 1-20 _
5 2
= 0 1-30 5
= :
5 140 %
=
g ' 50
-60
-1
-70
-15 j L -60
80 60 40 -20 0 20 40 60 80
Angle (degrees)

[1] Guereci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

phased.AngleDopplerResponse | phased.DPCACanceller |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

3-39

phased.ADPCACanceller.clone

Purpose Create ADPCA object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-40

phased.ADPCACanceller.getNuminputs
|

Purpose Number of expected inputs to step method
Syntax N = getNumInputs(H)
Description N = getNumInputs(H) returns a positive integer, N, representing the

number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-41

phased.ADPCACanceller.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-42

phased.ADPCACanceller.isLocked

Purpose
Syntax

Description

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the
ADPCACanceller System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-43

phased.ADPCACanceller.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-44

phased.ADPCACanceller.step

Purpose

Syntax

Description

Perform ADPCA processing on input data

step(H,X,CUTIDX)
step(H,X,CUTIDX,ANG)
step(,DOP)

Y,W] = step(___)

Y
Y
Y
[

Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation
algorithm to the input data X. The algorithm calculates the processing
weights according to the range cell specified by CUTIDX. This syntax
is available when the DirectionSource property is 'Property' and
the DopplerSource property is 'Property'. The receiving mainlobe
direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering,
depending on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe
direction. This syntax is available when the DirectionSource property
is 'Input port' and the DopplerSource property is 'Property'.

Y = step(,DOP) uses DOP as the targeting Doppler frequency. This
syntax 1s available when the DopplerSource property is ' Input port'.

[Y,W] = step(___) returns the additional output, W, as the processing
weights. This syntax is available when the WeightsOutputPort
property is true.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

3-45

phased.ADPCACanceller.step

Input H
Arguments Pulse canceller object.
X
Input data. X must be a 3-dimensional M-by-N-by-P numeric
array whose dimensions are (range, channels, pulses).
CUTIDX
Range cell.
ANG
Receiving mainlobe direction. ANG must be a 2-by-1 vector in
the form [AzimuthAngle; ElevationAngle], in degrees. The
azimuth angle must be between —180 and 180. The elevation
angle must be between —90 and 90.
Default: Direction property of H
DOP
Targeting Doppler frequency in hertz. DOP must be a scalar.
Default: Doppler property of H
Output Y
Arguments Result of applying pulse cancelling to the input data. The

meaning and dimensions of Y depend on the PreDopplerOutput
property of H:

e If PreDopplerOutput is true, Y contains the pre-Doppler data.
Y is an M-by-(P—1) matrix. Each column in Y represents the
result obtained by cancelling the two successive pulses.

e If PreDopplerOutput is false, Y contains the result of applying
an FFT-based Doppler filter to the pre-Doppler data. The
targeting Doppler is the Doppler property value. Y is a column
vector of length M.

3-46

phased.ADPCACanceller.step

Examples

See Also

Processing weights the pulse canceller used to obtain the
pre-Doppler data. The dimensions of W depend on the
PreDopplerOutput property of H:

e If PreDopplerOutput is true, Wis a 2N-by-(P-1) matrix. The
columns in W correspond to successive pulses in X.

e If PreDopplerOutput is false, Wis a column vector of length
(N*P).

Process the example radar data cube, STAPExampleData.mat, using
an ADPCA processor. The weights are calculated for the 71st cell
of a collected radar data cube. The look direction is [0; 0] degrees
and the Doppler frequency is 12980 Hz. After constructing the
phased.ADPCACanceller object, use step to process the data.

load STAPExampleData; % load radar data cube

Hs = phased.ADPCACanceller('SensorArray',STAPEXx_HArray,...
'"PRF',STAPEX_PRF,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
"NumTrainingCells',100,...
'WeightsOutputPort',true,...
'‘DirectionSource', 'Input port',...
'DopplerSource', 'Input port');

[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

uv2azel | phitheta2azel

3-47

phased.AngleDopplerResponse

Purpose

Description

Construction

Properties

3-48

Angle-Doppler response

The AngleDopplerResponse object calculates the angle-Doppler
response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See
“Construction” on page 3-48.

2 Call step to compute the angle-Doppler response of the input signal
according to the properties of phased.AngleDopplerResponse. The
behavior of step is specific to each object in the toolbox.

H = phased.AngleDopplerResponse creates an angle-Doppler response
System object, H. This object calculates the angle-Doppler response of
the input data.

H = phased.AngleDopplerResponse(Name,Value) creates
angle-Doppler object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

phased.AngleDopplerResponse

Default: Speed of light

OperatingFrequency

PRF

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input
signal as a positive scalar.

Default: 1

ElevationAngleSource

Source of elevation angle

Specify whether the elevation angle comes from the
ElevationAngle property of this object or from an input
argument in step. Values of this property are:

'"Property' The ElevationAngle property of this
object specifies the elevation angle.

"Input port' An input argument in each invocation
of step specifies the elevation angle.

Default: 'Property’

ElevationAngle

Elevation angle

3-49

phased.AngleDopplerResponse

3-50

Methods

Specify the elevation angle in degrees used to calculate

the angle-Doppler response as a scalar. The angle must be
between —90 and 90. This property applies when you set the
ElevationAngleSource property to 'Property’.

Default: 0

NumAngleSamples

Number of samples in angular domain

Specify the number of samples in the angular domain used to
calculate the angle-Doppler response as a positive integer. This
value must be greater than 2.

Default: 256

NumbDopplerSamples

Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to
calculate the angle-Doppler response as a positive integer. This
value must be greater than 2.

Default: 256

clone Create angle-Doppler response
object with same property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes

and nontunable properties

phased.AngleDopplerResponse

Examples

plotResponse Plot angle-Doppler response

release Allow property value and input
characteristics changes

step Calculate angle-Doppler response

Calculate the angle-Doppler response of the 190th cell of a collected
data cube.

load STAPExampleData;

X = shiftdim(STAPEx_ReceivePulse(190,:,:));

% Construct angle-Doppler response object

hadresp = phased.AngleDopplerResponse(...
‘SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'"PRF',STAPEX_PRF) ;

% Use the step method to obtain the angle-Doppler response

[resp,ang_grid,dop_grid] = step(hadresp,x);

% Plot the angle-Doppler response

contour(ang_grid,dop_grid,abs(resp))

xlabel('Angle'); ylabel('Doppler');

3-51

phased.AngleDopplerResponse

Figure 1 [E=R(ECR T

File Edit View Inset Tools Desktop Window Help

j—jd\-:j [% +\'\{W7@‘Lo{'@) O & im|

Doppler

Algorithms phased.AngleDopplerResponse generates the response using a
conventional beamformer and an FFT-based Doppler filter. For further

details, see [1].

References [1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

See Also phased.ADPCACanceller | phased.DPCACanceller |
phased.STAPSMIBeamformer | uv2azel | phitheta2azel

3-52

phased.AngleDopplerResponse.clone
|

Purpose Create angle-Doppler response object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-53

phased.AngleDopplerResponse.getNuminputs

3-54

Purpose
Syntax

Description

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.AngleDopplerResponse.getNumOutputs
|

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-55

phased.AngleDopplerResponse.isLocked

3-56

Purpose
Syntax

Description

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the
AngleDopplerResponse System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.AngleDopplerResponse.plotResponse

Purpose

Syntax

Description

Input
Arguments

Plot angle-Doppler response

plotResponse (H,X)
plotResponse(H,X,ELANG)
plotResponse(,Name,Value)
hPlot = plotResponse(__)

plotResponse (H,X) plots the angle-Doppler response of the data in X
in decibels. This syntax is available when the ElevationAngleSource
property is 'Property’.

plotResponse (H,X,ELANG) plots the angle-Doppler response calculated
using the specified elevation angle ELANG. This syntax is available when
the ElevationAngleSource property is 'Input port'.

plotResponse(___ ,Name,Value) plots the angle-Doppler response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(__) returns the handle of the image in
the figure window, using any of the input arguments in the previous
syntaxes.

H

Angle-Doppler response object.
X

Input data.
ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding

3-57

phased.AngleDopplerResponse.plotResponse

3-58

Examples

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuetl,...,NameN,ValueN.

NormalizeDoppler

Set this value to true to normalize the Doppler frequency. Set
this value to false to plot the angle-Doppler response without
normalizing the Doppler frequency.

Default: false

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Plot the angle-Doppler response of 190th cell of a collected data cube.

load STAPExampleData;

X = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(...
'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'"PRF',STAPEX_PRF);

plotResponse(hadresp,x, 'NormalizeDoppler',true);

phased.AngleDopplerResponse.plotResponse

See Also

nﬁguml
File Edit View Inset Tools Desktop Window Help

o= |

DEde bR ODEL- |2 |([0E O

Angle-Doppler Response Pattemn

0.5

0.4 -----

0.3 y-

0.2

0.1
0

-01

Normalized Doppler Frequency

-0.2

-0.3

04 - EE O EEEE

60 60 40 -20 0 20 40 60 80
Angle (degrees)

-0.5

Power (dB)

-100

110

-120

uv2azel | phitheta2azel

3-59

phased.AngleDopplerResponse.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-60

phased.AngleDopplerResponse.step

Purpose

Syntax

Description

Input
Arguments

Calculate angle-Doppler response

step(H,X)
step (H, X, ELANG)

[RESP,ANG_GRID,DOP_GRID]
[RESP,ANG_GRID,DOP_GRID]

[RESP,ANG_GRID,DOP_GRID] step(H,X) calculates the angle-Doppler
response of the data X. RESP is the complex angle-Doppler response.
ANG_GRID and DOP_GRID provide the angle samples and Doppler
samples, respectively, at which the angle-Doppler response is evaluated.
This syntax is available when the ElevationAngleSource property

is 'Property’'.

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG) calculates the
angle-Doppler response using the specified elevation angle ELANG.
This syntax is available when the ElevationAngleSource property is
"Input port'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Angle-Doppler response object.

Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the
number of elements of the array specified in the SensorArray
property of H.

3-61

phased.AngleDopplerResponse.step

If X is a vector, the number of rows must be an integer multiple of
the number of elements of the array specified in the SensorArray
property of H. In addition, the multiple must be at least 2.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Output RESP

Arguments Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P

is determined by the NumDopplerSamples property of H and Q is
determined by the NumAngleSamples property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated.
ANG_GRID is a column vector of length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is
evaluated. DOP_GRID is a column vector of length P.

Examples Calculate the angle-Doppler response of the 190th cell of a collected
data cube.

load STAPExampleData;

X = shiftdim(STAPEx_ReceivePulse(190,:,:));

% Construct angle-Doppler response object

hadresp = phased.AngleDopplerResponse(...
'SensorArray',STAPEx_HArray,...
'OperatingFrequency',STAPEx_OperatingFrequency,...
'PropagationSpeed',STAPEx_PropagationSpeed,...
'"PRF',STAPEX_PRF) ;

% Use the step method to obtain the angle-Doppler response

[resp,ang_grid,dop_grid] = step(hadresp,x);

% Plot the angle-Doppler response

3-62

phased.AngleDopplerResponse.step

Algorithms

References

See Also

contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle'); ylabel('Doppler');

Figurel
File Edit View Inset Tools Desktop Window Help

hl;dn.:! [% +_\{ﬂp@l=hhﬁv'quv DE

Doppler

phased.AngleDopplerResponse generates the response using a
conventional beamformer and an FFT-based Doppler filter. For further

details, see [1].

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:

Artech House, 2003.

uv2azel | phitheta2azel | azel2uv | azel2phitheta

3-63

phased.ArrayGain

3-64

Purpose

Description

Construction

Properties

Sensor array gain

The ArrayGain object calculates the array gain for a sensor array. The
array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. It is related to the array response but is
not the same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on
page 3-64.

2 Call step to estimate the gain according to the properties of
phased.ArrayGain. The behavior of step is specific to each object
in the toolbox.

H = phased.ArrayGain creates an array gain System object, H. This
object calculates the array gain of a 2-element uniform linear array for
specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object,
H, with the specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Valuel,...,.NameN,ValueN).

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

phased.ArrayGain

Methods

Definitions

Specify the propagation speed of the signal, in meters per second,

as a positive scalar.
Default: Speed of light

WeightsinputPort
Add input to specify weights

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

clone
getNumlInputs
getNumOutputs
isLocked
release

step

Array Gain

Create array gain object with
same property values

Number of expected inputs to
step method

Number of outputs from step
method

Locked status for input attributes
and nontunable properties

Allow property value and input
characteristics changes

Calculate array gain of sensor
array

The array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. You can express the array gain as follows:

3-65

phased.ArrayGain

3-66

Examples

References

wvsvw
SNR,,; wt Nw _ whovrfw
SNR;, (Sj wiw
N

In this equation:

® w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument
in the step method syntax.

® p is the steering vector representing the array response toward a
given direction. When you call the step method, the ANG argument
specifies the direction.

® sis the input signal power.

® N is the noise power.

® H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array

gain is the square of the array response normalized by the number
of elements in the array.

Calculate the array gain for a uniform linear array at the direction
of 30 degrees azimuth and 20 degrees elevation. The array operating
frequency is 300 MHz.

ha = phased.ULA(4);
hag = phased.ArrayGain('SensorArray',ha);
g = step(hag,3e8,[30;20]);

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston:
Artech House, 2003.

phased.ArrayGain

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayResponse | phased.ElementDelay |
phased.SteeringVector |

3-67

phased.ArrayGain.clone

Purpose Create array gain object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-68

phased.ArrayGain.getNuminputs
|

Purpose Number of expected inputs to step method
Syntax N = getNumInputs(H)
Description N = getNumInputs(H) returns a positive integer, N, representing the

number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-69

phased.ArrayGain.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-70

phased.ArrayGain.isLocked

Purpose
Syntax

Description

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the ArrayGain
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-71

phased.ArrayGain.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-72

phased.ArrayGain.step

Purpose

Syntax

Description

Input
Arguments

Calculate array gain of sensor array

G = step(H,FREQ,ANG)

G = step(H,FREQ,ANG,WEIGHTS)

G = step(H,FREQ,ANG,STEERANGLE)

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

G = step(H,FREQ,ANG) returns the array gain G of the array for the

operating frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on
the sensor array. This syntax is available when you set the
WeightsInputPort property to true.

G = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the
subarray steering angle. This syntax is available when you configure
H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
‘Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Array gain object.

3-73

phased.ArrayGain.step

3-74

FREQ

ANG

Operating frequencies of array in hertz. FREQ is a row

vector of length L. Typical values are within the range

specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of
array. The frequency range property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG 1s a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between —180 and 180 degrees, inclusive. The elevation
angle must be between —90 and 90 degrees, inclusive.

If ANG 1s a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L
matrix or a column vector of length N. N is the number of
subarrays if H.SensorArray contains subarrays, or the number

of elements otherwise. L 1s the number of frequencies specified
in FREQ.

If WEIGHTS 1s a matrix, each column of the matrix represents the
weights at the corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in
FREQ.

STEERANGLE

phased.ArrayGain.step

Output
Arguments

Definitions

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between —180 and 180
degrees, and the elevation angle must be between —90 and 90
degrees.

If STEERANGLE 1s a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

G

Gain of sensor array, in decibels. G is an M-by-L matrix. G
contains the gain at the M angles specified in ANG and the L
frequencies specified in FREQ.

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement
between the array output and the individual channel input, assuming
the noise is spatially white. You can express the array gain as follows:

vasva
SNRyy | wfNw | wHouPw
SNE;, (sj wiw
N

In this equation:

® w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument
in the step method syntax.

® v is the steering vector representing the array response toward a
given direction. When you call the step method, the ANG argument
specifies the direction.

3-75

phased.ArrayGain.step
|

® sis the input signal power.
® N is the noise power.

® H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array
gain is the square of the array response normalized by the number
of elements in the array.

Examples Construct a uniform linear array with six elements. The array operates
at 1 GHz and the array elements are spaced at one half the operating
frequency wavelength. Find the array gain in decibels for the direction
45 degrees azimuth and 10 degrees elevation.

% operating frequency 1 GHz

fc = 1e9;

% 1 GHz wavelength

lambda = physconst('LightSpeed')/fc;

% construct the ULA

hULA = phased.ULA('NumElements',6, 'ElementSpacing',lambda/2);
% construct the array gain object with the ULA as the sensor array
hgain = phased.ArrayGain('SensorArray',hULA);

% use step method to determine array gain at the specified

% operating frequency and angle

arraygain = step(hgain,fc,[45;10]);

% array gain is approximately -17.93 dB

See Also uv2azel | phitheta2azel

3-76

phased.ArrayResponse

Purpose

Description

Construction

Properties

Sensor array response

The ArrayResponse object calculates the complex-valued response of
a sensor array.

To compute the response of the array for specified directions:

1 Define and set up your array response calculator. See “Construction”
on page 3-77.

2 Call step to estimate the response according to the properties of
phased.ArrayResponse. The behavior of step is specific to each
object in the toolbox.

H = phased.ArrayResponse creates an array response System object,
H. This object calculates the response of a sensor array for the specified
directions. By default, a 2-element uniform linear array (ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Valuel,...,NameN,ValueN).

SensorArray
Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-77

phased.ArrayResponse

Default: Speed of light

WeightsinputPort
Add input to specify weights

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Methods clone Create array response object with
same property values
getNumlInputs Number of expected inputs to
step method
getNumOutputs Number of outputs from step
method
isLocked Locked status for input attributes

and nontunable properties

release Allow property value and input
characteristics changes

step Calculate array response of
sensor array

Examples Calculate the array response for a 4-element uniform linear array in
the direction of 30 degrees azimuth and 20 degrees elevation. Assume
the array’s operating frequency is 300 MHz.

ha = phased.ULA(4);

har = phased.ArrayResponse('SensorArray',ha);

resp = step(har,3e8,[30;20]);

% Plot the array response in dB (azimuth cut--normalized power)
plotResponse(ha,3e8,physconst('LightSpeed'));

3-78

phased.ArrayResponse
|

u Figurel EI@

File Edit View Insert Tools Desktop Window Help u
NEEL| bRV DEL- |G I aD

Azimuth Cut (elevation angle = U_Ua}

o
=
5
=
@
e It (SRR RS
Lk
L=
m
£
L=
=

i
L]
[=]

T
1
1
1
'
1
1
]
1
'
1
1
1
]
'
1
1
1
]
i
1
T
1
:
B

]
=1
=
i
Lu
o -
=
i
Lu
= -----
=
i
o
1=}
=1

Azimuth Angle (degrees)

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.ArrayGain | phased.ElementDelay |
phased.ConformalArray/plotResponse | phased.ULA/plotResponse
| phased.URA/plotResponse | phased.SteeringVector |

3-79

phased.ArrayResponse.clone

Purpose Create array response object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-80

phased.ArrayResponse.getNuminputs

Purpose Number of expected inputs to step method
Syntax N = getNumInputs(H)
Description N = getNumInputs(H) returns a positive integer, N, representing the

number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-81

phased.ArrayResponse.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-82

phased.ArrayResponse.isLocked

Purpose
Syntax

Description

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the ArrayResponse
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-83

phased.ArrayResponse.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-84

phased.ArrayResponse.step

Purpose

Syntax

Description

Input
Arguments

Calculate array response of sensor array

RESP = step(H,FREQ,ANG)

RESP = step(H,FREQ,ANG,WEIGHTS)

RESP = step(H,FREQ,ANG, STEERANGLE)

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)

RESP step (H,FREQ,ANG) returns the array response RESP at
operating frequencies specified in FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS
on the sensor array. This syntax is available when you set the
WeightsInputPort property to true.

RESP = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as

the subarray steering angle. This syntax is available when you
configure H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
‘Time'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Array response object.

3-85

phased.ArrayResponse.step

3-86

FREQ

ANG

Operating frequencies of array in hertz. FREQ is a row

vector of length L. Typical values are within the range

specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of
array. The frequency range property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.
The element has zero response at frequencies outside that range.

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG 1s a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle
must be between —180 and 180 degrees, inclusive. The elevation
angle must be between —90 and 90 degrees, inclusive.

If ANG 1s a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L
matrix or a column vector of length N. N is the number of
subarrays if H.SensorArray contains subarrays, or the number

of elements otherwise. L 1s the number of frequencies specified
in FREQ.

If WEIGHTS 1s a matrix, each column of the matrix represents the
weights at the corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in
FREQ.

STEERANGLE

phased.ArrayResponse.step

Output
Arguments

Examples

See Also

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between —180 and 180
degrees, and the elevation angle must be between —90 and 90
degrees.

If STEERANGLE 1s a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

RESP

Response of sensor array. RESP is an M-by-L matrix. RESP
contains the array responses at the M angles specified in ANG and
the L frequencies specified in FREQ.

Find the array response for a 6-element uniform linear array operating
at 1 GHz. The array elements are spaced at one half the operating
frequency wavelength. The incident angle is 45 degrees azimuth and
10 degrees elevation.

fc = 1e9;
% 1 GHz wavelength

lambda = physconst('LightSpeed')/fc;
% construct the ULA

hULA = phased.ULA('NumElements',6, ' 'ElementSpacing',lambda/2);
% construct array response object with the ULA as sensor array
har = phased.ArrayResponse('SensorArray',hULA);

% use step to obtain array response at 1 GHz for an incident

% angle of 45 degrees azimuth and 10 degrees elevation

resp = step(har,fc,[45;10]);

uv2azel | phitheta2azel

3-87

phased.BarrageJammer

3-88

Purpose

Description

Construction

Properties

Barrage jammer

The BarrageJammer object implements a white Gaussian noise jammer.
To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page
3-88.

2 Call step to compute the jammer output according to the properties
of phased.Barragedammer. The behavior of step is specific to each
object in the toolbox.

H = phased.BarrageJammer creates a barrage jammer System object, H.
This object generates a complex white Gaussian noise jamming signal.

H = phased.BarrageJammer (Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Valuel,...,.NameN,ValueN).

H = phased.BarrageJammer (E,Name,Value) creates a barrage jammer
object, H, with the ERP property set to E and other specified property
Names set to the specified Values.

ERP

Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the
jamming signal as a positive scalar.

Default: 5000

SamplesPerFrameSource

Source of number of samples per frame

phased.BarrageJammer

Specify whether the number of samples of the jamming signal
comes from the SamplesPerFrame property of this object or from
an input argument in step. Values of this property are:

'"Property’ The SamplesPerFrame property of
this object specifies the number of
samples of the jamming signal.

"Input port' An input argument in each invocation

of step specifies the number of
samples of the jamming signal.

Default: 'Property’

SamplesPerFrame

Number of samples per frame

Specify the number of samples in the output jamming signal
as a positive integer. This property applies when you set the
SamplesPerFrameSource property to 'Property’.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this

property are:

3-89

phased.BarrageJammer

"Auto’

The default MATLAB random number
generator produces the random numbers.
Use 'Auto’ if you are using this object
with Parallel Computing Toolbox™
software.

'Property’

The object uses its own private random
number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

Default: 'Auto’

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232—1. This property applies when you set
the SeedSource property to 'Property"'.

Default: 0

Methods clone

getNumlInputs
getNumOutputs

isLocked

3-90

Create barrage jammer object
with same property values

Number of expected inputs to
step method

Number of outputs from step
method

Locked status for input attributes
and nontunable properties

phased.BarrageJammer

Examples

release Allow property value and input
characteristics changes

reset Reset random number generator
for noise generation

step Generate noise jamming signal

Create a barrage jammer with an effective radiated power of 1000 w
and plot the magnitude of that jammer’s output. Your plot might vary
because of random numbers.

Hjammer = phased.Barragedammer('ERP',1000);

X = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

3-91

phased.BarrageJammer

Figure 1 [E=8(E=E =S
File Edit View Inset Tools Desktop Window Help E
j—jd\-:j B +\'\'§rr7@‘-h_£'@; g Ed il
?U T T T T T T T T T
60 | .
50+ B
= 40 .
= 30f
201 -
10F .
U 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Samples
References [1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.
See Also phased.Platform | phased.RadarTarget |

3-92

phased.BarrageJammer.clone

Purpose Create barrage jammer object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-93

phased.BarrageJammer.getNuminputs

3-94

Purpose
Syntax

Description

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.BarrageJammer.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-95

phased.BarrageJammer.isLocked

3-96

Purpose
Syntax

Description

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the BarrageJammer
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.BarrageJammer.release

Purpose
Syntax

Description

Allow property value and input characteristics changes
release(H)

release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-97

phased.BarrageJammer.reset

Purpose Reset random number generator for noise generation
Syntax reset (H)
Description reset (H) resets the states of the BarrageJammer object, H. This method

resets the random number generator state if the SeedSource property
1s set to 'Property'.

3-98

phased.BarrageJammer.step

Purpose

Syntax

Description

Examples

Generate noise jamming signal

Y = step(H)
Y = step(H,N)
Y = step(H) returns a column vector, Y, that is a complex white

Gaussian noise jamming signal. The power of the jamming signal is
specified by the ERP property. The length of the jamming signal is
specified by the SamplesPerFrame property. This syntax is available
when the SamplesPerFrameSource property is 'Property’.

Y = step(H,N) returns the jamming signal with length N. This syntax
1s available when the SamplesPerFrameSource property is 'Input
port'.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Create a barrage jammer with an effective radiated power of 1000 w
and plot the magnitude of that jammer’s output. Your plot might vary
because of random numbers.

Hjammer = phased.Barragedammer('ERP',1000);
X = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

3-99

phased.BarrageJammer.step

Figure 1 [E=R(ECR T

File Edit View Inset Tools Desktop Window Help E

j—jd\-:j [% +\'\{W7@‘Lo{'@) O & im|

70 T T T T T T T T T

60 B

i
L]
T
L

Iagnitude
=
1

[¥5]
=]
T

P
(=1
T
1

—
L]
T
L

U 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 a0 90 100

Samples

3-100

phased.BeamscanEstimator

Purpose

Description

Construction

Properties

Beamscan spatial spectrum estimator for ULA

The BeamscanEstimator object calculates a beamscan spatial spectrum
estimate for a uniform linear array.

To estimate the spatial spectrum:

1 Define and set up your beamscan spatial spectrum estimator. See
“Construction” on page 3-101.

2 Call step to estimate the spatial spectrum according to the properties
of phased.BeamscanEstimator. The behavior of step is specific to
each object in the toolbox.

H = phased.BeamscanEstimator creates a beamscan spatial spectrum
estimator System object, H. The object estimates the incoming signal’s
spatial spectrum using a narrowband conventional beamformer for a
uniform linear array (ULA).

H = phased.BeamscanEstimator(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Valuel,...,NameN,ValueN).

SensorArray
Handle to sensor array
Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

3-101

phased.BeamscanEstimator

3-102

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of elements by 1. The maximum
value of this property is M—2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles
are broadside angles and must be between —90 and 90, inclusive.
You must specify the angles in ascending order.

phased.BeamscanEstimator

Methods

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAQutputPort property to true.

Default: 1

clone Create beamscan spatial
spectrum estimator object
with same property values

getNumlInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input

characteristics changes

3-103

phased.BeamscanEstimator

Examples

3-104

reset Reset states of beamscan spatial
spectrum estimator object

step Perform spatial spectrum
estimation

Estimate the DOAs of two signals received by a standard 10-element
ULA with an element spacing of one meter. The antenna operating
frequency is 150 MHz. The actual direction of the first signal is 10
degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 60 degrees in azimuth and —5 degrees in elevation. This
example also plots the spatial spectrum.

fs 8000; t = (0:1/fs:1)."';

x1 cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

X = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'OperatingFrequency’',fc,...
'DOAQutputPort',true, 'NumSignals',2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

plotSpectrum(hdoa);

phased.BeamscanEstimator

n Figure1 EE

File Edit View Insert Tools
ﬂjlﬂé [:E .{\-._:\-{fr?@@aﬁ'@) DIE‘ EE

Beamscan Spatial Spectrum

Desktop Window Help

FPower (dB)

-80 60 40 -20 0 20 40 G0 80
Broadside Angle (degrees)

[1] Van Trees, H. Optimum Array Processing. New York:

References
Wiley-Interscience, 2002, pp. 1142-1143.

3-105

phased.BeamscanEstimator

See Also broadside2azphased.BeamscanEstimator2D |

3-106

phased.BeamscanEstimator.clone

Purpose Create beamscan spatial spectrum estimator object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-107

phased.BeamscanEstimator.getNuminputs

Purpose
Syntax

Description

3-108

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.BeamscanEstimator.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-109

phased.BeamscanEstimator.isLocked

Purpose
Syntax

Description

3-110

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF isLocked(H) returns the locked status, TF, for the
BeamscanEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.BeamscanEstimator.plotSpectrum

Purpose

Syntax

Description

Input
Arguments

Plot spatial spectrum

plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

H
Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.
NormalizeResponse
Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

Title

String to use as title of figure.

Default: Empty string

3-111

phased.BeamscanEstimator.plotSpectrum

Examples

3-112

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
1is 60 degrees in azimuth and —5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";

x1 CcOos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha phased.ULA('NumElements',10, 'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'OperatingFrequency',fc,...
'DOAQutputPort',true, 'NumSignals',2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

plotSpectrum(hdoa);

phased.BeamscanEstimator.plotSpectrum

n Figure1 EE

File Edit View Inset Tools Desktop Window Help
ﬂjlﬂé [:E .{\-._:\-{fr?@@aﬁ'@) DIE‘ EE

Beamscan Spatial Spectrum

-80 60 40 -20 0 20 40 G0 80
Broadside Angle (degrees)

3-113

phased.BeamscanEstimator.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-114

phased.BeamscanEstimator.reset

Purpose Reset states of beamscan spatial spectrum estimator object
Syntax reset (H)
Description reset (H) resets the states of the BeamscanEstimator object, H.

3-115

phased.BeamscanEstimator.step

Purpose

Syntax

Description

Examples

3-116

Perform spatial spectrum estimation

Y = step(H,X)
[Y,ANG] = step(H,X)

Y = step(H,X) estimates the spatial spectrum from X using the
estimator, H. X 1s a matrix whose columns correspond to channels. Y is
a column vector representing the magnitude of the estimated spatial
spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a row vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
1s 60 degrees in azimuth and -5 degrees in elevation.

fs 8000; t = (0:1/fs:1).";

x1 cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10, 'ElementSpacing’',1);
ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

X = collectPlaneWave(ha,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));

phased.BeamscanEstimator.step

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
'OperatingFrequency',fc,...
'DOAQutputPort',true, 'NumSignals',2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

See Also azel2uv | azel2phitheta

3-117

phased.BeamscanEstimator2D

Purpose

Description

Construction

Properties

3-118

2-D beamscan spatial spectrum estimator

The BeamscanEstimator2D object calculates a 2-D beamscan spatial
spectrum estimate.

To estimate the spatial spectrum:

1 Define and set up your 2-D beamscan spatial spectrum estimator.
See “Construction” on page 3-118.

2 Call step to estimate the spatial spectrum according to the properties
of phased.BeamscanEstimator2D. The behavior of step is specific to
each object in the toolbox.

H = phased.BeamscanEstimator2D creates a 2-D beamscan spatial
spectrum estimator System object, H. The object estimates the signal’s
spatial spectrum using a narrowband conventional beamformer.

H = phased.BeamscanEstimator2D(Name,Value) creates object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Valuel,...,.NameN,ValueN).

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be
an array object in the phased package. The array cannot contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

phased.BeamscanEstimator2D

Default: Speed of light

OperatingFrequency
System operating frequency
Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

ForwardBackwardAveraging
Perform forward-backward averaging

Set this property to true to use forward-backward averaging to
estimate the covariance matrix for sensor arrays with conjugate
symmetric array manifold.

Default: false

AzimuthScanAngles
Azimuth scan angles

Specify the azimuth scan angles (in degrees) as a real vector. The
angles must be between —180 and 180, inclusive. You must specify
the angles in ascending order.

Default: -90:90

ElevationScanAngles
Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or
scalar. The angles must be within [-90 90]. You must specify the
angles in an ascending order.

Default: 0

3-119

phased.BeamscanEstimator2D

DOAOutputPort
Enable DOA output

To obtain the signal’s direction of arrival (DOA), set this property
to true and use the corresponding output argument when
invoking step. If you do not want to obtain the DOA, set this
property to false.

Default: false

NumSignals
Number of signals

Specify the number of signals for DOA estimation as a
positive scalar integer. This property applies when you set the
DOAQutputPort property to true.

Default: 1
Methods clone Create 2-D beamscan spatial

spectrum estimator object with
same property values

getNumlInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes
and nontunable properties

plotSpectrum Plot spatial spectrum

release Allow property value and input

characteristics changes

3-120

phased.BeamscanEstimator2D

reset Reset states of 2-D beamscan
spatial spectrum estimator object

step Perform spatial spectrum
estimation
Examples Estimate the DOAs of two signals received by a 50-element URA with

a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is —37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees
in azimuth and 20 degrees in elevation. This example also plots the
spatial spectrum.

ha = phased.URA('Size',[5 10], 'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

angl = [-37; 0]; ang2 = [17; 20];

X = sensorsig(getElementPosition(ha)/lambda,8000,[angl ang2],0.2);

hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...
'OperatingFrequency’',fc,...
'DOAQutputPort',true, 'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[-,doas] = step(hdoa,x);

plotSpectrum(hdoa);

3-121

phased.BeamscanEstimator2D

References

See Also

3-122

B Figure 1 E=3 EcR =

File Edit Wiew Insert Tools Desktop Window Help &

Odde RO EA- @ 0H

2-D Beamscan Spatial Spectrum

&0

a

Elevation Angle (degrees) 50 50 Azirmuth Angle (degrees)

[1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

phased.BeamscanEstimator | uv2azel | phitheta2azel

phased.BeamscanEstimator2D.clone

Purpose Create 2-D beamscan spatial spectrum estimator object with same
property values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-123

phased.BeamscanEstimator2D.getNuminputs

Purpose
Syntax

Description

3-124

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.BeamscanEstimator2D.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-125

phased.BeamscanEstimator2D.isLocked

Purpose
Syntax

Description

3-126

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF isLocked(H) returns the locked status, TF, for the
BeamscanEstimator2D System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.BeamscanEstimator2D.plotSpectrum

Purpose

Syntax

Description

Input
Arguments

Plot spatial spectrum

plotSpectrum(H)
plotSpectrum(H,Name,Value)
h = plotSpectrum(___)

plotSpectrum(H) plots the spatial spectrum resulting from the last call
of the step method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with
additional options specified by one or more Name,Value pair
arguments.

h = plotSpectrum(___) returns the line handle in the figure.

H
Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.
NormalizeResponse
Set this value to true to plot the normalized spectrum. Set this
value to false to plot the spectrum without normalizing it.

Default: false

Title

String to use as title of figure.

Default: Empty string

3-127

phased.BeamscanEstimator2D.plotSpectrum

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is —37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10], 'ElementSpacing',[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

angl = [-37; 0]; ang2 = [17; 201;

X = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);

hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...
'OperatingFrequency',fc,...
'DOAOQutputPort',true, 'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);

[~,doas] = step(hdoa,x);

plotSpectrum(hdoa);

3-128

phased.BeamscanEstimator2D.plotSpectrum

== EeR

File Edit View Inset Tools Desktop Window Help N

DEde | M| ARODEL- S |08 aO

g kT
i

3-129

phased.BeamscanEstimator2D.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-130

phased.BeamscanEstimator2D.reset

Purpose Reset states of 2-D beamscan spatial spectrum estimator object
Syntax reset (H)
Description reset (H) resets the states of the BeamscanEstimator2D object, H.

3-131

phased.BeamscanEstimator2D.step

Purpose

Syntax

Description

Examples

3-132

Perform spatial spectrum estimation

Y = step(H,X)
[Y,ANG] = step(H,X)

Y = step(H,X) estimates the spatial spectrum from X using the
estimator H. X 1s a matrix whose columns correspond to channels. Y

is a matrix representing the magnitude of the estimated 2-D spatial
spectrum. Y has a row dimension equal to the number of elevation
angles specified in ElevationScanAngles and a column dimension
equal to the number of azimuth angles specified in AzimuthScanAngles.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s
direction of arrival (DOA) when the DOAOutputPort property is true.
ANG is a two row matrix where the first row represents the estimated
azimuth and the second row represents the estimated elevation (in
degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Estimate the DOAs of two signals received by a 50-element URA with
a rectangular lattice. The antenna operating frequency is 150 MHz.
The actual direction of the first signal is —37 degrees in azimuth and 0
degrees in elevation. The direction of the second signal is 17 degrees in
azimuth and 20 degrees in elevation.

ha = phased.URA('Size',[5 10], 'ElementSpacing',[1 0.6]);
ha.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;

phased.BeamscanEstimator2D.step

lambda = physconst('LightSpeed')/fc;
angl = [-37; 0]; ang2 = [17; 201;
X = sensorsig(getElementPosition(ha)/lambda,8000,[ang1 ang2],0.2);
hdoa = phased.BeamscanEstimator2D('SensorArray',ha,...
'OperatingFrequency',fc,...
'DOAOQutputPort',true, 'NumSignals',2,...
'AzimuthScanAngles',-50:50,...
'ElevationScanAngles',-30:30);
[~,doas] = step(hdoa,x);

See Also azel2uv | azel2phitheta

3-133

phased.BeamspaceESPRITEstimator

Purpose

Description

Construction

Properties

3-134

Beamspace ESPRIT direction of arrival (DOA) estimator

The BeamspaceESPRITEstimator object computes a DOA estimate for
a uniform linear array. The computation uses the estimation of signal
parameters via rotational invariance techniques (ESPRIT) algorithm

in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page
3-134.

2 Call step to estimate the DOA according to the properties of
phased.BeamspaceESPRITEstimator. The behavior of step is
specific to each object in the toolbox.

H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT
DOA estimator System object, H. The object estimates the signal’s
direction of arrival using the beamspace ESPRIT algorithm with a
uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator (Name,Value) creates object,
H, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Valuel,...,.NameN,ValueN).

SensorArray
Handle to sensor array
Specify the sensor array as a handle. The sensor array must be a
phased.ULA object.
Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

phased.BeamspaceESPRITEstimator

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency
System operating frequency
Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

SpatialSmoothing
Spatial smoothing

Specify the number of averaging used by spatial smoothing to
estimate the covariance matrix as a nonnegative integer. Each
additional smoothing handles one extra coherent source, but
reduces the effective number of element by 1. The maximum
value of this property is M—2, where M is the number of sensors.

Default: 0, indicating no spatial smoothing

NumSignalsSource
Source of number of signals

Specify the source of the number of signals as one of 'Auto’
or 'Property'. If you set this property to 'Auto’, the
number of signals is estimated by the method specified by the
NumSignalsMethod property.

Default: 'Auto’

NumSignalsMethod

Method to estimate number of signals

3-135

phased.BeamspaceESPRITEstimator

Specify the method to estimate the number of signals as one of
"AIC' or 'MDL'. 'AIC' uses the Akaike Information Criterion and
'"MDL ' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto’.

Default: 'AIC'

NumSignals
Number of signals

Specify the number of signals as a positive integer scalar. This
property applies when you set the NumSignalsSource property
to 'Property’.

Default: 1
Method

Type of least square method

Specify the least squares method used for ESPRIT as one of 'TLS'
or 'LS'. 'TLS' refers to total least squares and 'LS' refers to
least squares.

Default: 'TLS'

BeamFanCenter
Beam fan center direction (in degrees)

Specify the direction of the center of the beam fan (in degrees) as
a real scalar value between —90 and 90. This property is tunable.

Default: 0

NumBeamsSource

Source of number of beams

3-136

phased.BeamspaceESPRITEstimator

Specify the source of the number of beams as one of 'Auto' or
'"Property'. If you set this property to 'Auto’', the number of
beams equals N-L, where N is the number of array elements and
L 1s the value of the SpatialSmoothing property.

Default: 'Auto’

NumBeams

Number of beams

Specify the number of beams as a positive scalar integer.
The lower the number of beams, the greater the reduction in
computational cost. This property applies when you set the
NumBeamsSource to 'Property'.

Default: 2
Methods clone Create beamspace ESPRIT DOA
estimator object with same
property values
getNumlInputs Number of expected inputs to
step method
getNumOutputs Number of outputs from step
method
isLocked Locked status for input attributes
and nontunable properties
release Allow property value and input
characteristics changes
step Perform DOA estimation
Examples Estimate the DOAs of two signals received by a standard 10-element

ULA with element spacing 1 meter. The antenna operating frequency
is 150 MHz. The actual direction of the first signal is 10 degrees in

3-137

phased.BeamspaceESPRITEstimator

azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs 8000; t = (0:1/fs:1).";

x1 Ccos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10,'ElementSpacing’',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

X = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

% construct beamspace ESPRIT estimator

hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...
'OperatingFrequency',fc,...
"NumSignalsSource', 'Property', 'NumSignals',2);

% use the step method to obtain the direction of arrival estimates

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60]);

References [1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also broadside2azphased.ESPRITEstimator |

3-138

phased.BeamspaceESPRITEstimator.clone

Purpose

Syntax

Description

Create beamspace ESPRIT DOA estimator object with same property
values

C = clone(H)

C = clone(H) creates an object, C, having the same property values
and same states as H. If H is locked, so is C.

3-139

phased.BeamspaceESPRITEstimator.getNumlinputs

Purpose
Syntax

Description

3-140

Number of expected inputs to step method

N

getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.BeamspaceESPRITEstimator.getNumOutputs
|

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-141

phased.BeamspaceESPRITEstimator.isLocked

Purpose
Syntax

Description

3-142

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF isLocked(H) returns the locked status, TF, for the
BeamspaceESPRITEstimator System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.BeamspaceESPRITEstimator.release

Purpose
Syntax

Description

Allow property value and input characteristics changes

release(H)

release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-143

phased.BeamspaceESPRITEstimator.step

Purpose Perform DOA estimation
Syntax ANG = step(H,X)
Description ANG = step(H,X) estimates the DOAs from X using the DOA estimator

H. X is a matrix whose columns correspond to channels. ANG is a row
vector of the estimated broadside angles (in degrees).

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Examples Estimate the DOAs of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency
1s 150 MHz. The actual direction of the first signal i1s 10 degrees in
azimuth and 20 degrees in elevation. The direction of the second signal
is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";

x1 cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA('NumElements',10, 'ElementSpacing',1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

X = collectPlaneWave(ha,[x1 x2],[10 20;45 60]',fc);

rng default;

noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));

% construct beamspace ESPRIT estimator

hdoa = phased.BeamspaceESPRITEstimator('SensorArray',ha,...
'OperatingFrequency',fc,...
"NumSignalsSource', 'Property', 'NumSignals',2);

% use the step method to obtain the direction of arrival estimates

3-144

phased.BeamspaceESPRITEstimator.step

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60]);

3-145

phased.CFARDetector

Purpose

Description

Construction

Properties

3-146

Constant false alarm rate (CFAR) detector

The CFARDetector object implements a constant false-alarm rate
detector.

To perform the detection:

1 Define and set up your CFAR detector. See “Construction” on page
3-146.

2 Call step to perform CFAR detection according to the properties of
phased.CFARDetector. The behavior of step is specific to each object
in the toolbox.

H = phased.CFARDetector creates a constant false alarm rate (CFAR)
detector System object, H. The object performs CFAR detection on the
input data.

H = phased.CFARDetector (Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Valuel,...,.NameN,ValueN).

Method
CFAR algorithm

Specify the algorithm of the CFAR detector as a string. Values of
this property are:

"CA' Cell-averaging CFAR

'"GOCA' Greatest-of cell-averaging CFAR

'0S! Order statistic CFAR

'SOCA' Smallest-of cell-averaging CFAR
Default: 'CA'

phased.CFARDetector

Rank
Rank of order statistic

Specify the rank of the order statistic as a positive integer
scalar. The value must be less than or equal to the value of the
NumTrainingCells property. This property applies only when you
set the Method property to '0S"'.

Default: 1

NumGuardCells
Number of guard cells

Specify the number of guard cells used in training as an even
integer. This property specifies the total number of cells on both
sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the
front and back of the cell under test

NumTrainingCells
Number of training cells

Specify the number of training cells used in training as an even
integer. Whenever possible, the training cells are equally divided
before and after the cell under test.

Default: 2, indicating that there is one training cell at both the
front and back of the cell under test

ThresholdFactor
Methods of obtaining threshold factor

Specify whether the threshold factor comes from an automatic
calculation, the CustomThresholdFactor property of this object,
or an input argument in step. Values of this property are:

3-147

phased.CFARDetector

'Auto’ The application calculates the
threshold factor automatically

based on the desired probability

of false alarm specified in the
ProbabilityFalseAlarm property.
The calculation assumes each
independent signal in the input is a
single pulse coming out of a square
law detector with no pulse integration.
The calculation also assumes the noise
is white Gaussian.

"Custom' The CustomThresholdFactor
property of this object specifies the
threshold factor.

"Input port' An input argument in each invocation
of step specifies the threshold factor.

Default: 'Auto’

ProbabilityFalseAlarm
Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between
0 and 1 (not inclusive). This property applies only when you set
the ThresholdFactor property to 'Auto’.

Default: 0.1

CustomThresholdFactor
Custom threshold factor

Specify the custom threshold factor as a positive scalar. This
property applies only when you set the ThresholdFactor property
to 'Custom'. This property is tunable.

3-148

phased.CFARDetector

Methods

Examples

Default: 1

ThresholdOutputPort

Output detection threshold

To obtain the detection threshold, set this property to true and
use the corresponding output argument when invoking step.
If you do not want to obtain the detection threshold, set this

property to false.

Default: false

clone

getNumlInputs

getNumOutputs

isLocked

release

step

Create CFAR detector object with
same property values

Number of expected inputs to
step method

Number of outputs from step
method

Locked status for input attributes
and nontunable properties

Allow property value and input
characteristics changes

Perform CFAR detection

Perform cell-averaging CFAR detection on a given Gaussian noise vector
with a desired probability of false alarm of 0.1. Assume that the data is
from a square law detector and no pulse integration is performed. Use
50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of input.

rng(5);
hdet =

phased.CFARDetector('NumTrainingCells',50,...

"NumGuardCells',2, 'ProbabilityFalseAlarm',0.1);

3-149

phased.CFARDetector

N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));
dresult = step(hdet,abs(x).”2,1:N);
Pfa = sum(dresult)/N;

Algorithms phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise
estimate. The next table indicates how the detector forms the noise
estimate, depending on the Method property value.

Method Noise Estimate

'CA' Use the average of the values in all the training
cells.

"GOCA' Select the greater of the averages in the front

training cells and rear training cells.

'0S' Sort the values in the training cells in ascending
order. Select the Nth item, where N is the value
of the Rank property.

"SOCA' Select the smaller of the averages in the front
training cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the
threshold.

3 Compare the value in the test cell against the threshold to determine
whether the target is present or absent. If the value is greater than
the threshold, the target is present.

For further details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

See Also npwgnthreshphased.MatchedFilter | phased.TimeVaryingGain |

3-150

phased.CFARDetector.clone
|

Purpose Create CFAR detector object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-151

phased.CFARDetector.getNuminputs

Purpose
Syntax

Description

3-152

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.CFARDetector.getNumOutputs
|

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-153

phased.CFARDetector.isLocked

Purpose
Syntax

Description

3-154

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the CFARDetector
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.CFARDetector.release

Purpose
Syntax

Description

Allow property value and input characteristics changes
release(H)

release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-155

phased.CFARDetector.step

Purpose

Syntax

Description

Examples

3-156

Perform CFAR detection

Y step(H,X,CUTIDX)
Y step(H,X,CUTIDX, THFAC)
[Y,TH] = step(__)

Y = step(H,X,CUTIDX) performs the CFAR detection on the real input
data X. X can be either a column vector or a matrix. Each row of X is a
cell and each column of X is independent data. Detection is performed
along each column for the cells specified in CUTIDX. CUTIDX must be

a vector of positive integers with each entry specifying the index of a
cell under test (CUT). Y is an M-by-N matrix containing the logical
detection result for the cells in X. M is the number of indices specified in
CUTIDX, and N is the number of independent signals in X.

Y = step(H,X,CUTIDX,THFAC) uses THFAC as the threshold factor used
to calculate the detection threshold. This syntax is available when you
set the ThresholdFactor property to 'Input port'. THFAC must be a
positive scalar.

[Y,TH] = step(___) returns additional output, TH, as the detection
threshold for each cell under test in X. This syntax is available when
you set the ThresholdOutputPort property to true. TH has the same
dimensionality as Y.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Perform cell-averaging CFAR detection on a given Gaussian noise vector
with a desired probability of false alarm of 0.1. Assume that the data is

phased.CFARDetector.step

Algorithms

from a square law detector and no pulse integration is performed. Use
50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of input.

rng(5);

hdet = phased.CFARDetector('NumTrainingCells',50,...
"NumGuardCells',2, 'ProbabilityFalseAlarm',0.1);

N = 1000; x = 1/sqrt(2)*(randn(N,1)+1i*randn(N,1));

dresult = step(hdet,abs(x)."2,1:N);

Pfa = sum(dresult)/N;

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise
estimate. The next table indicates how the detector forms the noise
estimate, depending on the Method property value.

Method Noise Estimate

'CA' Use the average of the values in all the training
cells.

'"GOCA' Select the greater of the averages in the front

training cells and rear training cells.

'0S' Sort the values in the training cells in ascending
order. Select the Nth item, where NN is the value
of the Rank property.

"SOCA' Select the smaller of the averages in the front
training cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the
threshold.

3 Compare the value in the test cell against the threshold to determine

whether the target is present or absent. If the value is greater than
the threshold, the target is present.

3-157

phased.CFARDetector.step

For details, see [1].

References [1] Richards, M. A. Fundamentals of Radar Signal Processing. New
York: McGraw-Hill, 2005.

3-158

phased.Collector

Purpose

Description

Construction

Properties

Narrowband signal collector

The Collector object implements a narrowband signal collector.
To compute the collected signal at the sensor(s):

1 Define and set up your signal collector. See “Construction” on page
3-159.

2 Call step to collect the signal according to the properties of
phased.Collector. The behavior of step is specific to each object
in the toolbox.

H = phased.Collector creates a narrowband signal collector System
object, H. The object collects incident narrowband signals from given
directions using a sensor array or a single element.

H = phased.Collector(Name,Value) creates a collector object, H,
with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Name1,Valuel,...,.NameN,ValueN).

Sensor
Handle of sensor

Specify the sensor as a sensor array object or an element object
in the phased package. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

3-159

phased.Collector

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

WeightsinputPort

Enable weights input

To specify weights, set this property to true and use the
corresponding input argument when you invoke step. If you do
not want to specify weights, set this property to false.

Default: false

Wavefront

3-160

Type of incoming wavefront

Specify the type of incoming wavefront as one of 'Plane', or
'Unspecified':

¢ If you set the Wavefront property to 'Plane', the input signals
are multiple plane waves impinging on the entire array. Each
plane wave is received by all collecting elements. If the Sensor
property is an array that contains subarrays, the Wavefront
property must be 'Plane’.

¢ If you set the Wavefront property to 'Unspecified’', the input
signals are individual waves impinging on individual sensors.

Default: 'Plane’

phased.Collector

Methods

Examples

clone Create collector object with same
property values

getNumInputs Number of expected inputs to
step method

getNumOutputs Number of outputs from step
method

isLocked Locked status for input attributes

and nontunable properties

release Allow property value and input
characteristics changes

step Collect signals

Collect signal with a single antenna.

ha phased.IsotropicAntennaElement;

hc = phased.Collector('Sensor',ha, 'OperatingFrequency',1e9);
x = [1;1];

incidentAngle = [10 30]"';

y = step(hc,x,incidentAngle);

Collect a far field signal with a 5-element array.

ha phased.ULA('NumElements',5);

hc phased.Collector('Sensor',ha, 'OperatingFrequency',1e9);
X = [1;1];

incidentAngle = [10 30]';

y = step(hc,x,incidentAngle);

Collect signals with a 3-element array. Each antenna collects a separate
input signal from a separate direction.

3-161

phased.Collector

Algorithms

References

ha phased.ULA('NumElements',3);

hc = phased.Collector('Sensor',ha, 'OperatingFrequency',1e9,...
'Wavefront', 'Unspecified');

X = rand(10,3); % Each column is a separate signal for one element

incidentAngle = [10 0; 20 5; 45 2]'; % 3 angles for 3 signals

y = step(hc,x,incidentAngle);

If the Wavefront property value is 'Plane', phased.Collector
collects each plane wave signal using the phase approximation of the
time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified’', phased.Collector
collects each channel independently.

For further details, see [1].

[1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

See Also phased.WidebandCollector |

3-162

phased.Collector.clone

Purpose Create collector object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-163

phased.Collector.getNuminputs

Purpose
Syntax

Description

3-164

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.Collector.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-165

phased.Collector.isLocked

Purpose
Syntax

Description

3-166

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the Collector
System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.Collector.release

Purpose
Syntax

Description

Allow property value and input characteristics changes
release(H)

release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-167

phased.Collector.step

Purpose

Syntax

Description

3-168

Collect signals

= step(H,X,ANG)

= step(H,X,ANG,WEIGHTS)

= step(H,X,ANG,STEERANGLE)

= step(H,X,ANG,WEIGHTS,STEERANGLE)

< < =< <

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The
collection process depends on the Wavefront property of H, as follows:

e [fwavefront has the value 'Plane’, each collecting element collects
all the far field signals in X. Each column of Y contains the output of
the corresponding element in response to all the signals in X.

e [fwavefront has the value 'Unspecified', each collecting element
collects only one impinging signal from X. Each column of Y
contains the output of the corresponding element in response to the
corresponding column of X. The 'Unspecified’' option is available
when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This
syntax is available when you set the WeightsInputPort property to
true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure

H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,WEIGHTS,STEERANGLE) combines all input
arguments. This syntax is available when you configure H so that
H.WeightsInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
‘Time'.

phased.Collector.step

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock

the object.
Input H
Arguments Collector object.
X
Arriving signals. Each column of X represents a separate signal.
The specific interpretation of X depends on the Wavefront
property of H.
Wavefront Description
Property
Value
'Plane’ Each column of X is a far field signal.
'Unspecified' | Each column of X is the signal impinging
on the corresponding element. In this case,
the number of columns in X must equal the
number of collecting elements in the Sensor
property.
ANG

Incident directions of signals, specified as a two-row matrix.
Each column specifies the incident direction of the corresponding
column of X. Each column of ANG has the form [azimuth;
elevation], in degrees. The azimuth angle must be between —180
and 180 degrees, inclusive. The elevation angle must be between
—90 and 90 degrees, inclusive.

3-169

phased.Collector.step

Output
Arguments

Examples

3-170

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where
M is the number of collecting elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector.
The vector has the form [azimuth; elevation], in degrees. The
azimuth angle must be between —180 and 180 degrees, inclusive.
The elevation angle must be between —90 and 90 degrees,
inclusive.

Collected signals. Each column of Y contains the output of the
corresponding element. The output is the response to all the
signals in X, or one signal in X, depending on the Wavefront
property of H.

Construct a 4-element uniform linear array. The array operating
frequency is 1 GHz. The array element spacing is half the operating
frequency wavelength. Model the collection of a 200-Hz sine wave
incident on the array from 45 degrees azimuth, 10 degrees elevation
from the far field.

fc = 1e9;

lambda = physconst('LightSpeed')/fc;

hULA = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);

t = linspace(0,1,1e3);

X = €c0S(2*pi*200*t)"';

% construct the collector object.

hc = phased.Collector('Sensor',hULA,...
'PropagationSpeed',physconst('LightSpeed'), ...
'Wavefront', 'Plane', 'OperatingFrequency',fc);

% incident angle is 45 degrees azimuth, 10 degrees elevation

phased.Collector.step

Algorithms

References

See Also

incidentangle = [45;10];
% collect the incident waveform at the ULA
receivedsig = step(hc,x,incidentangle);

If the Wavefront property value is 'Plane', phased.Collector
collects each plane wave signal using the phase approximation of the
time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified’', phased.Collector
collects each channel independently.

For further details, see [1].

[1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

uv2azel | phitheta2azel

3-171

phased.ConformalArray

Purpose

Description

Construction

Properties

3-172

Conformal array

The ConformalArray object constructs a conformal array. A conformal
array can have elements in any position pointing in any direction.

To compute the response for each element in the array for specified
directions:

1 Define and set up your conformal array. See “Construction” on page
3-172.

2 Call step to compute the response according to the properties of
phased.ConformalArray. The behavior of step is specific to each
object in the toolbox.

H = phased.ConformalArray creates a conformal array System object,
H. The object models a conformal array formed with identical sensor
elements.

H = phased.ConformalArray(Name,Value) creates object, H, with
each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Name1,Valuel,...,NameN,ValueN).

H = phased.ConformalArray(POS,NV,Name,Value) creates a
conformal array object, H, with the ELementPosition property set

to POS, the ELementNormal property set to NV, and other specified
property Names set to the specified Values. POS and NV are value-only
arguments. To specify a value-only argument, you must also specify
all preceding value-only arguments. You can specify name-value
arguments in any order.

Element

Element of array

Specify the element of the sensor array as a handle. The element
must be an element object in the phased package.

phased.ConformalArray

Default: An isotropic antenna element that operates between
300 MHz and 1 GHz

ElementPosition
Element positions

ElementPosition specifies the positions of the elements in the
conformal array. ElementPosition must be a 3-by-N matrix,
where N indicates the number of elements in the conformal array.
Each column of ElementPosition represents the position, in the
form [x; y; z] (in meters), of a single element in the array’s local
coordinate system. The local coordinate system has its origin at
an arbitrary point. The default value of this property represents a
single element at the origin of the local coordinate system.

Default: [0; 0; 0]

ElementNormal
Element normal directions

ElementNormal specifies the normal directions of the elements
in the conformal array. ElementNormal must be a 2-by-N
matrix, where N indicates the number of elements in the array.
Each column of ElementNormal specifies the normal direction
of the corresponding element in the form [azimuth; elevation]
(in degrees) defined in the local coordinate system. The local
coordinate system aligns the positive x-axis with the direction
normal to the conformal array.

You can use the ElementPosition and ElementNormal properties
to represent any arrangement in which pairs of elements differ
by certain transformations. The transformations can combine
translation, azimuth rotation, and elevation rotation. However,
you cannot use transformations that require rotation about the
normal.

Default: [0; 0]

3-173

phased.ConformalArray

Methods

Examples

3-174

clone

collectPlaneWave
getElementPosition
getNumElements

getNumlInputs

getNumOutputs

isLocked

plotResponse

release

step

viewArray

Create conformal array object
with same property values

Simulate received plane waves
Positions of array elements
Number of elements in array

Number of expected inputs to
step method

Number of outputs from step
method

Locked status for input attributes
and nontunable properties

Plot response pattern of array

Allow property value and input
characteristics changes

Output responses of array
elements

View array geometry

Construct an 8-element uniform circular array (UCA) and plot its
azimuth responses. Assume the operating frequency is 1 GHz and the

wave propagation speed is 3e8 m/s.

N = 8; azang = (0:N-1)*360/N-180;

ha = phased.ConformalArray(...
'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

"ElementNormal’', [azang;zeros(1,N)]);

fc = 1e9; c = 3e8;

plotResponse(ha,fc,c, 'RespCut','Az', 'Format', 'Polar');

phased.ConformalArray

References

See Also

Figure 1 [&]

File Edit View Inset Tools Desktop Window Help u

_bl_jl.ﬂu.:! [:3 +k._k.{fr?@l"h._£' '?—y |:| 1wy

Azimuth Cut (elevation angle = U_Ua}

Mormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and
Design. Piscataway, NJ: IEEE Press, 2006.

[2] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

phased.ReplicatedSubarray | phased.PartitionedArray |
phased.CosineAntennaElement | phased.CustomAntennaElement
| phased.IsotropicAntennaElement | phased.ULA | phased.URA |
uv2azel | phitheta2azel

3-175

phased.ConformalArray

Related ¢ Phased Array Gallery
Examples

3-176

../examples/phased-array-gallery.html

phased.ConformalArray.clone

Purpose Create conformal array object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-177

phased.ConformalArray.collectPlaneWave

Purpose

Syntax

Description

Input
Arguments

3-178

Simulate received plane waves

<
1}

collectPlaneWave (H,X,ANG)
Y = collectPlaneWave(H, X,ANG, FREQ)
Y = collectPlaneWave (H,X,ANG,FREQ,C)

Y = collectPlaneWave (H,X,ANG) returns the received signals at the
sensor array, H, when the input signals indicated by X arrive at the
array from the directions specified in ANG.

Y = collectPlaneWave (H,X,ANG,FREQ) uses FREQ as the incoming
signal’s carrier frequency.

Y = collectPlaneWave (H,X,ANG,FREQ,C) uses C as the signal’s
propagation speed. C must be a scalar.

H
Array object.

Incoming signals, specified as an M-column matrix. Each column
of X represents an individual incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG
can be either a 2-by-M matrix or a row vector of length M.

If ANG 1s a 2-by-M matrix, each column specifies the direction of
arrival of the corresponding signal in X. Each column of ANG is in
the form [azimuth; elevation]. The azimuth angle must be
between —180 and 180 degrees, inclusive. The elevation angle
must be between —90 and 90 degrees, inclusive.

If ANG 1s a row vector of length M, each entry in ANG specifies the
azimuth angle. In this case, the corresponding elevation angle
is assumed to be 0.

FREQ

phased.ConformalArray.collectPlaneWave

Output
Arguments

Examples

Algorithms

References

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8

Propagation speed of signal in meters per second.

Default: Speed of light

Received signals. Y is an N-column matrix, where N is the number
of elements in the array H. Each column of Y is the received signal
at the corresponding array element, with all incoming signals
combined.

Simulate the received signal at an 8-element uniform circular array.

The signals arrive from 10 degrees and 30 degrees azimuth. Both
signals have an elevation angle of 0 degrees. Assume the propagation
speed is the speed of light and the carrier frequency of the signal is
100 MHz.

N = 8; azang = (0:N-1)*360/N-180;
hArray = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

"ElementNormal’', [azang;zeros(1,N)]);
y = collectPlaneWave(hArray,randn(4,2),[10 30],1e8);

collectPlaneWave modulates the input signal with a phase
corresponding to the delay caused by the direction of arrival. The
method does not account for the response of individual elements in
the array.

For further details, see [1].

[1] Van Trees, H. Optimum Array Processing. New York:
Wiley-Interscience, 2002.

3-179

phased.ConformalArray.collectPlaneWave

See Also uv2azel | phitheta2azel

3-180

phased.ConformalArray.getElementPosition

Purpose

Syntax

Description

Examples

Positions of array elements

POS = getElementPosition(H)
POS getElementPosition(H,ELEIDX)

POS getElementPosition(H) returns the element positions of the
conformal array H. POS is an 3xN matrix where N is the number of
elements in H. Each column of POS defines the position of an element in
the local coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the conformal array,
enter phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the
elements that are specified in the element index vector ELEIDX.

Construct a default conformal array and obtain the element positions.

ha = phased.ConformalArray;
pos = getElementPosition(ha)

3-181

phased.ConformalArray.getNumElements

Purpose Number of elements in array
Syntax N = getNumElements(H)
Description N = getNumElements(H) returns the number of elements, N, in the

conformal array object H.

Examples Construct a default conformal array and obtain the number of elements.

ha = phased.ConformalArray;
N = getNumElements(ha)

3-182

phased.ConformalArray.getNuminputs
|

Purpose Number of expected inputs to step method
Syntax N = getNumInputs(H)
Description N = getNumInputs(H) returns a positive integer, N, representing the

number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

3-183

phased.ConformalArray.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-184

phased.ConformalArray.isLocked

Purpose
Syntax

Description

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF = islLocked(H) returns the locked status, TF, for the
ConformalArray System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

3-185

phased.ConformalArray.plotResponse

Purpose Plot response pattern of array

Syntax plotResponse (H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse(__)

Description plotResponse(H,FREQ,V) plots the array response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency is
specified in FREQ. The propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(__) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

Input H

Arguments Array object.

FREQ

Operating frequency in hertz. Typical values are within the
range specified by a property of H.Element. That property is
named FrequencyRange or FrequencyVector, depending on the
type of element in the array. The element has zero response at
frequencies outside that range. If FREQ is a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

3-186

phased.ConformalArray.plotResponse

specify several name and value pair arguments in any order as
Namei1,Valuetl,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'E1'. If RespCut is 'Az', CutAngle must
be between —90 and 90. If RespCut is 'E1', CutAngle must be
between —180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line’

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D"'.

Default: true

RespCut

3-187

phased.ConformalArray.plotResponse

Examples

3-188

Cut of the response. Valid values depend on Format, as follows:

e [f Formatis 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'E1l', and '3D'. The defaultis 'Az"'.

e If Formatis 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.
Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.
Default: 'db'

Weights

Weights applied to the array, specified as a length-IN column
vector or N-by-M matrix. N is the number of elements in the
array. M is the number of frequencies in FREQ. If Weights is a
vector, the function applies the same weights to each frequency. If
Weights is a matrix, the function applies each column of weight
values to the corresponding frequency in FREQ.

Construct an 8-element uniform circular array (UCA) and plot its
azimuth responses. Assume the operating frequency is 1 GHz and the
wave propagation speed is 3e8 m/s.

N = 8; azang = (0:N-1)*360/N-180;

ha = phased.ConformalArray(...
'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal',[azang;zeros(1,N)]);

fc = 1e9; ¢ = 3e8;

plotResponse(ha,fc,c, 'RespCut','Az', 'Format', 'Polar');

phased.ConformalArray.plotResponse

See Also

Figure1
File Edit

View

Mormalized Power (dB)

=)

Insert Tools Desktop Window Help

_bl_jl.ﬂu.:! [:3 +k._k.{fr?@l"h._£' '?—y |:| 1wy

Azimuth Cut (elevation angle = U_Ua}

Mormalized Power (dB), Broadside at 0.00 degrees

|

uv2azel |

azel2uv

3-189

phased.ConformalArray.release

Purpose Allow property value and input characteristics changes
Syntax release(H)
Description release(H) releases system resources (such as memory, file handles

or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-190

phased.ConformalArray.step

Purpose
Syntax

Description

Input
Arguments

Output responses of array elements

RESP

step(H,FREQ,ANG)

RESP step(H,FREQ,ANG) returns the array elements’ responses RESP
at operating frequencies specified in FREQ and directions specified in
ANG.

Note The object performs an initialization the first time the step
method is executed. This initialization locks nontunable properties and
input specifications, such as dimensions, complexity, and data type

of the input data. If you change a nontunable property or an input
specification, the System object issues an error. To change nontunable
properties or inputs, you must first call the release method to unlock
the object.

Array object.
FREQ

Operating frequencies of array in hertz. FREQ is a row vector

of length L. Typical values are within the range specified by a
property of H.Element. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the
array. The element has zero response at frequencies outside that
range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG 1s a 2-by-M matrix, each column of the matrix specifies the
direction in the form [azimuth; elevation]. The azimuth angle

3-191

phased.ConformalArray.step

Output
Arguments

Examples

See Also

3-192

must be between —180 and 180 degrees, inclusive. The elevation
angle must be between —90 and 90 degrees, inclusive.

If ANG 1s a row vector of length M, each element specifies a
direction’s azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

RESP

Responses of array elements. RESP has dimensions N-by-M-by-L.
N is the number of elements in the phased array. Each column
of RESP contains the responses of the array elements for the
corresponding direction specified in ANG. Each of the L pages

of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Construct an 8-element uniform circular array (UCA). Assume the
operating frequency is 1 GHz. Find the response of each element in this
array in the direction of 30 degrees azimuth and 5 degrees elevation.

ha = phased.ConformalArray;

N = 8; azang = (0:N-1)*360/N-180;

ha.ElementPosition = [cosd(azang);sind(azang);zeros(1,N)];
ha.ElementNormal = [azang;zeros(1,N)];

fc = 1e9; ang = [30;5];

resp = step(ha,fc,ang);

uv2azel | phitheta2azel

phased.ConformalArray.viewArray

Purpose

Syntax

Description

Input
Arguments

View array geometry

viewArray (H)
viewArray (H,Name,Value)
hPlot = viewArray(__)

viewArray (H) plots the geometry of the array specified in H.

viewArray (H,Name,Value) plots the geometry of the array, with
additional options specified by one or more Name,Value pair
arguments.

hPlot = viewArray(__) returns the handle of the array elements
in the figure window. All input arguments described for the previous
syntaxes also apply here.

H
Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuel,...,NameN,ValueN.

Showlindex

Vector specifying the element indices to show in the figure. Each
number in the vector must be an integer between 1 and the
number of elements. You can also specify the string 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

3-193

phased.ConformalArray.viewArray

Output
Arguments

Examples

3-194

Set this value to true to show the normal directions of all
elements of the array. Set this value to false to plot the elements
without showing normal directions.

Default: false

Title

String specifying the title of the plot.

Default: 'Array Geometry'

hPlot

Handle of array elements in figure window.

Positions and Normal Directions in Uniform Circular Array

Display the element positions and normal directions of all elements of
an 8-element uniform circular array.

Create a vector of eight uniformly spaced azimuth angles.

N = 8;
azang = (0:N-1) * 360/N - 180;

Create an 8-element uniform circular array.

ha = phased.ConformalArray(...

'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...

'ElementNormal’', [azang;zeros(1,N)]);

Display the element positions and normal directions of all elements
in the array.

viewArray (ha, 'ShowNormals', true)

phased.ConformalArray.viewArray

See Also

Related
Examples

Figure1

f<v*—.

x

[E=N(ECR =

File Edit View Inset Tools Desktep Window Help

DEHS | K| RQSODEMA- S| 0H a3

Array Geometry

\’Lo/

@

o N

Array Span:
Haxiz=2m
YWoaxiz=2m
Laxiz=0m

L]

phased.ArrayResponse |

¢ Phased Array Gallery

3-195

../examples/phased-array-gallery.html

phased.ConstantGammaClutter

Purpose

Description

Construction

3-196

Constant gamma clutter simulation

The ConstantGammaClutter object simulates clutter.
To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on
page 3-196.

2 Call step to simulate the clutter return for your system according to
the properties of phased.ConstantGammaClutter. The behavior of
step is specific to each object in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:

® The radar system is monostatic.

* The propagation is in free space.

¢ The terrain is homogeneous.

® The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

® The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

® The radar system maintains a constant height during simulation.

® The radar system maintains a constant speed during simulation.

H = phased.ConstantGammaClutter creates a constant gamma clutter
simulation System object, H. This object simulates the clutter return of
a monostatic radar system using the constant gamma model.

H = phased.ConstantGammaClutter (Name,Value) creates a constant
gamma clutter simulation object, H, with additional options specified
by one or more Name,Value pair arguments. Name is a property name,

phased.ConstantGammaClutter

Properties

and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name-value pair arguments in any
order as Name1,Valuel, ,NameN,ValueN.

Sensor
Handle of sensor

Specify the sensor as an antenna element object or as an array
object whose Element property value is an antenna element
object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values
PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second,
as a positive scalar.

Default: Speed of light

OperatingFrequency
System operating frequency
Specify the operating frequency of the system in hertz as a
positive scalar. The default value corresponds to 300 MHz.

Default: 3e8

SampleRate
Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default
value corresponds to 1 MHz.

Default: 1e6

3-197

phased.ConstantGammaClutter

3-198

PRF
Pulse repetition frequency
Specify the pulse repetition frequency in hertz as a positive scalar
or a row vector. The default value of this property corresponds to
10 kHz. When PRF is a vector, it represents a staggered PRF. In
this case, the output pulses use elements in the vector as their
PRFs, one after another, in a cycle.
Default: 1e4

Gamma
Terrain gamma value
Specify the y value used in the constant y clutter model, as a
scalar in decibels. The y value depends on both terrain type and
the operating frequency.
Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of |
'Flat' | 'Curved' |. When you set this property to 'Flat', the
earth is assumed to be a flat plane. When you set this property to
'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward
from the surface as a nonnegative scalar.

Default: 300

phased.ConstantGammaClutter

PlatformSpeed
Radar platform speed
Specify the radar platform’s speed as a nonnegative scalar in
meters per second.

Default: 300

PlatformDirection
Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector
in the form [AzimuthAngle; ElevationAngle] in degrees. The
default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local
coordinate system of the radar antenna or antenna array.
Azimuth angle must be between —180 and 180 degrees. Elevation
angle must be between —90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle
Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the
radar antenna array. This value is a scalar. The broadside is
defined as zero degrees azimuth and zero degrees elevation. The
depression angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

3-199

phased.ConstantGammaClutter

Specify the maximum range in meters for the clutter simulation
as a positive scalar. The maximum range must be greater than
the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage
Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The
clutter simulation covers a region having the specified azimuth
span, symmetric to 0 degrees azimuth. Typically, all clutter
patches have their azimuth centers within the region, but the
PatchAzimuthwidth value can cause some patches to extend
beyond the region.

Default: 60

PatchAzimuthWidth
Azimuth span of each clutter patch
Specify the azimuth span of each clutter patch in degrees as a
positive scalar.

Default: 1

TransmitSignallnputPort
Add input to specify transmit signal

Set this property to true to add input to specify the transmit
signal in the step syntax. Set this property to false omit the
transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also
specify the TransmitERP property.

Default: false

3-200

phased.ConstantGammaClutter

TransmitERP
Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the
radar system in watts as a positive scalar. This property applies
only when you set the TransmitSignalInputPort property to
false.

Default: 5000

CoherenceTime
Clutter coherence time

Specify the coherence time in seconds for the clutter simulation
as a positive scalar. After the coherence time elapses, the step
method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random
numbers are never updated.

Default: inf

OutputFormat
Output signal format

Specify the format of the output signal as one of | 'Pulses’

| 'Samples' |. When you set the OutputFormat property to
'"Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the
NumPulses property.

When you set the OutputFormat property to 'Samples', the
output of the step method is in the form of multiple samples. In
this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the
'Samples' option more convenient because the step output
always has the same matrix size.

3-201

phased.ConstantGammaClutter

Default: 'Pulses'

NumPulses
Number of pulses in output

Specify the number of pulses in the output of the step method as
a positive integer. This property applies only when you set the
OutputFormat property to 'Pulses’.

Default: 1

NumSamples
Number of samples in output

Specify the number of samples in the output of the step method
as a positive integer. Typically, you use the number of samples
in one pulse. This property applies only when you set the
OutputFormat property to 'Samples'.

Default: 100

SeedSource
Source of seed for random number generator

Specify how the object generates random numbers. Values of this
property are:

3-202

phased.ConstantGammaClutter

Methods

'Auto’ The default MATLAB random number
generator produces the random numbers.
Use 'Auto’ if you are using this object
with Parallel Computing Toolbox software.

'"Property’ The object uses its own private random

number generator to produce random
numbers. The Seed property of this object
specifies the seed of the random number
generator. Use 'Property' if you want
repeatable results and are not using this
object with Parallel Computing Toolbox
software.

Default: 'Auto’

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar
integer between 0 and 232—1. This property applies when you set
the SeedSource property to 'Property"'.

Default: 0

clone

getNumlInputs

getNumOutputs

isLocked

Create constant gamma clutter
simulation object with same
property values

Number of expected inputs to
step method

Number of outputs from step
method

Locked status for input attributes
and nontunable properties

3-203

phased.ConstantGammaClutter

Examples

3-204

release Allow property value and input
characteristics changes

reset Reset random numbers and time
count for clutter simulation

step Simulate clutter using constant
gamma model

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF 1s 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele, 'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/— 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0; tpower = 5000;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...
'PropagationSpeed',c, 'OperatingFrequency',fc, 'PRF',prf,...
'SampleRate',fs, 'Gamma',tergamma, 'EarthModel', 'Flat',...

phased.ConstantGammaClutter

'TransmitERP',tpower, 'PlatformHeight',height,...
'PlatformSpeed',speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle’' ,depang, ‘MaximumRange',Rmax, ...
'"AzimuthCoverage',Azcov, 'SeedSource', 'Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc, 'PropagationSpeed',c, 'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
‘NormalizeDoppler',true);

3-205

phased.ConstantGammaClutter

P

B Figure: E=REeRx

File Edit View Inset Tools Desktop Window Help N

DEEde || RR0IRL- SR 0T

Angle-Doppler Response Pattern
s —= . —_—

Mormalized Doppler Frequency

Angle (degrees)

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an
input argument. In this case, you do not record the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the

3-206

phased.ConstantGammaClutter

operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele, 'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit
signal as an input argument to step. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/— 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...
'PropagationSpeed',c, 'OperatingFrequency',fc, 'PRF',prf,...
'SampleRate’',fs, 'Gamma',tergamma, 'EarthModel', 'Flat',...
'TransmitSignalInputPort',true, 'PlatformHeight',height,...
'PlatformSpeed',speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle’' ,depang, ‘MaximumRange',Rmax, ...
'AzimuthCoverage',Azcov, 'SeedSource', 'Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 us.

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;

3-207

phased.ConstantGammaClutter

3-208

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc, 'PropagationSpeed',c, 'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'‘NormalizeDoppler',true);

phased.ConstantGammaClutter

Extended
Capabilities

P "~

B Figure: E=REeRx

File Edit View Inset Tools Desktop Window Help N

DEEde || RR0IRL- SR 0T

Angle-Doppler Response Pattern
0.5 :

I d

T
1
1
d—

5

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
le
i
1
1

Mormalized Doppler Frequency
[]

Angle (degrees)

Parallel Computing

You can use this System object to perform Monte Carlo simulations
with Parallel Computing Toolbox constructs, such as parfor. In this
situation, set the SeedSource property to 'Auto’' to ensure correct,
automatic handling of random number streams on the workers.

Do not use this System object in a parallel construct whose iterations
represent data from consecutive pulses. Because such iterations are
not independent of each other, they must run sequentially. For more

3-209

phased.ConstantGammaClutter

References

See Also

Related
Examples

Concepts

3-210

information about parallel computing constructs, see “Deciding When to
Use parfor” or “Programming Considerations”.

To perform computations on a GPU instead of a CPU,
use phased.gpu.ConstantGammaClutter instead of
phased.ConstantGammaClutter

[1] Barton, David. “Land Clutter Models for Radar Design and
Analysis,” Proceedings of the IEEE. Vol. 73, Number 2, February, 1985,
pp. 198-204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed.
Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar
Design Principles, 2nd Ed. Mendham, NdJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data
Systems,” Technical Report 1015, MIT Lincoln Laboratory, December,
1994.

phased.BarrageJammer | phased.gpu.ConstantGammaClutter |
surfacegamma | uv2azel | phitheta2azel

¢ Ground Clutter Mitigation with Moving Target Indication (MTT)
Radar
¢ “Example: DPCA Pulse Canceller for Clutter Rejection”

o “Clutter Modeling”

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.ConstantGammacClutter.clone

Purpose Create constant gamma clutter simulation object with same property
values

Syntax C = clone(H)

Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-211

phased.ConstantGammacClutter.getNuminputs

Purpose
Syntax

Description

3-212

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.ConstantGammacClutter.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-213

phased.ConstantGammaClutter.isLocked

Purpose
Syntax

Description

3-214

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF isLocked(H) returns the locked status, TF, for the
ConstantGammaClutter System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.ConstantGammaClutter.release

Purpose
Syntax

Description

Allow property value and input characteristics changes
release(H)

release(H) releases system resources (such as memory, file handles
or hardware connections) and allows all properties and input
characteristics to be changed.

Note You can use the release method on a System object in code
generated from MATLAB, but once you release its resources, you cannot
use that System object again.

3-215

phased.ConstantGammaClutter.reset

Purpose
Syntax

Description

3-216

Reset random numbers and time count for clutter simulation
reset(H)

reset (H) resets the states of the ConstantGammaClutter object, H. This
method resets the random number generator state if the SeedSource
property is set to 'Property'. This method resets the elapsed coherence
time. Also, if the PRF property is a vector, the next call to step uses
the first PRF value in the vector.

phased.ConstantGammaClutter.step

Purpose

Syntax

Description

Input
Arguments

Simulate clutter using constant gamma model

= step(H)
= step(H,X)

= step(H,STEERANGLE)

= step(H,X,STEERANGLE)

< < =< <

Y = step(H) computes the collected clutter return at each sensor. This
syntax is available when you set the TransmitSignalInputPort
property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal
refers to the output of the transmitter while it is on during a given pulse.
This syntax is available when you set the TransmitSignalInputPort
property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor
is an array that contains subarrays and H.Sensor.SubarraySteering
is either 'Phase' or 'Time'.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax
is available when you configure H so that H. TransmitSignalInputPort

is true, H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

H

Constant gamma clutter object.
X

Transmit signal, specified as a column vector.
STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a
length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth;
elevation]. The azimuth angle must be between —180 and 180

3-217

phased.ConstantGammacClutter.step

degrees, and the elevation angle must be between —90 and 90
degrees.

If STEERANGLE 1s a scalar, it represents the azimuth angle. In
this case, the elevation angle is assumed to be 0.

Output Y

Arguments Collected clutter return at each sensor. Y has dimensions N-by-M

matrix. M is the number of subarrays in the radar system if
H.Sensor contains subarrays, or the number of sensors, otherwise.
When you set the OutputFormat property to 'Samples', N

is specified in the NumSamples property. When you set the
OutputFormat property to 'Pulses', N is the total number of
samples in the next L pulses. In this case, L is specified in the
NumPulses property.

Tips The clutter simulation that ConstantGammaClutter provides is based
on these assumptions:
® The radar system is monostatic.
¢ The propagation is in free space.
® The terrain is homogeneous.

¢ The clutter patch is stationary during the coherence time. Coherence
time indicates how frequently the software changes the set of random
numbers in the clutter simulation.

® The signal is narrowband. Thus, the spatial response can be
approximated by a phase shift. Similarly, the Doppler shift can be
approximated by a phase shift.

® The radar system maintains a constant height during simulation.

® The radar system maintains a constant speed during simulation.

3-218

phased.ConstantGammaClutter.step

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB.
The effective transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the
operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele, 'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/— 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0; tpower = 5000;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...
'PropagationSpeed',c, 'OperatingFrequency',fc, 'PRF',prf,...
'SampleRate’',fs, 'Gamma',tergamma, 'EarthModel', 'Flat',...
'TransmitERP',tpower, 'PlatformHeight',height,...
'PlatformSpeed',speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle’' ,depang, ‘MaximumRange',Rmax, ...
'AzimuthCoverage',Azcov, 'SeedSource', 'Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf; Npulse = 10;

3-219

phased.ConstantGammacClutter.step

3-220

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc, 'PropagationSpeed',c, 'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
'‘NormalizeDoppler',true);

phased.ConstantGammacClutter.step

P

n Figure1

a0 S

File Edit View Inset Tools Desktop Window Help

|

U de

| RROPRL- S |([0E DT

0.5

Angle-Doppler Response Pattern

Mormalized Doppler Frequency

Angle (degrees)

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB.
The step syntax includes the transmit signal of the radar system as an

input argument. In this case, you do not record the effective transmitted

power of the signal in a property.

Set up the characteristics of the radar system. This system has a
4-element uniform linear array (ULA). The sample rate is 1 MHz, and
the PRF is 10 kHz. The propagation speed is 300,000 km/s, and the

3-221

phased.ConstantGammacClutter.step

3-222

operating frequency is 300 MHz. The radar platform is flying 1 km
above the ground with a path parallel to the ground along the array
axis. The platform speed is 2000 m/s. The mainlobe has a depression
angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA('NumElements',Nele, 'ElementSpacing',lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit
signal as an input argument to step. The configuration assumes the
earth is flat. The maximum clutter range of interest is 5 km, and the
maximum azimuth coverage is +/— 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0;

hclutter = phased.ConstantGammaClutter('Sensor',ha,...
'PropagationSpeed',c, 'OperatingFrequency',fc, 'PRF',prf,...
'SampleRate’',fs, 'Gamma',tergamma, 'EarthModel', 'Flat',...
'TransmitSignalInputPort',true, 'PlatformHeight',height,...
'PlatformSpeed' ,speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle’' ,depang, '‘MaximumRange',Rmax, ...
'AzimuthCoverage',Azcov, 'SeedSource', 'Property',...
'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the
transmit signal as an input argument. The software automatically
computes the effective transmitted power of the signal. The transmit
signal is a rectangular waveform with a pulse width of 2 us.

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;

phased.ConstantGammaClutter.step

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse('SensorArray',ha,...
'OperatingFrequency',fc, 'PropagationSpeed',c, 'PRF',prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),...
‘NormalizeDoppler',true);

3-223

phased.ConstantGammacClutter.step

P

B Fioure =)

File Edit View Inset Tools Desktop Window Help N

DEEde || RR0IRL- SR 0T

Angle-Doppler Response Pattern
0.5 . . :

Mormalized Doppler Frequency

Angle (degrees)

Related ® Ground Clutter Mitigation with Moving Target Indication (MTI)

Examples Radar
¢ “Example: DPCA Pulse Canceller for Clutter Rejection”

Concepts e “Clutter Modeling”

3-224

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html
../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

phased.CosineAntennaElement

Purpose

Description

Construction

Properties

Cosine antenna

The CosineAntennaElement object models an antenna with a cosine
response in both azimuth and elevation.

To compute the response of the antenna element for specified directions:

1 Define and set up your cosine antenna element. See “Construction”
on page 3-225.

2 Call step to compute the antenna response according to the
properties of phased.CosineAntennaElement. The behavior of step
1s specific to each object in the toolbox.

H = phased.CosineAntennaElement creates a cosine antenna system
object, H, that models an antenna element whose response is cosine
raised to a specified power greater than or equal to one in both the
azimuth and elevation directions.

H = phased.CosineAntennaElement (Name,Value) creates a cosine
antenna object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Name1,Valuel,...,NameN,ValueN).

FrequencyRange
Operating frequency range

Specify the operating frequency range (in hertz) of the antenna
element as a 1-by-2 row vector in the form of [LowerBound
HigherBound]. The antenna element has no response outside
the specified frequency range. The default value represents the
UHF band.

Default: [3e8 1e9]

CosinePower

Exponent of cosine pattern

3-225

phased.CosineAntennaElement

Specify the exponent of cosine pattern as a scalar or a 1-by-2
vector. All specified values must be real numbers greater than

or equal to 1. When you set CosinePower to a scalar, both the
azimuth direction cosine pattern and the elevation direction
cosine pattern are raised to the specified value. When you set
CosinePower to a 1-by-2 vector, the first element is the exponent
for the azimuth direction cosine pattern and the second element is
the exponent for the elevation direction cosine pattern.

Default: [1.5 1.5]

Methods clone Create cosine antenna object with
same property values
getNumlInputs Number of expected inputs to
step method
getNumOutputs Number of outputs from step
method
isLocked Locked status for input attributes
and nontunable properties
plotResponse Plot response pattern of antenna
release Allow property value and input
characteristics changes
step Output response of antenna
element
Definitions Cosine Response

The cosine response, or cosine pattern, is given by:

P(az,el) = cos™ (az)cos™ (el)

In this expression:

3-226

phased.CosineAntennaElement

Examples

® qzis the azimuth angle.
® ¢/ is the elevation angle.

® The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between —90
and 90 degrees, inclusive. There is no response at the back of a cosine
antenna. The cosine response pattern achieves a maximum value of
1 at O degrees azimuth and elevation. Raising the response pattern
to powers greater than one concentrates the response in azimuth or
elevation.

Construct a cosine pattern antenna and calculate its response at the
boresight. Assume the antenna can work between 800 MHz and 1.2
GHz and the operating frequency is 1 GHz.

ha = phased.CosineAntennaElement('FrequencyRange',...
[800e6 1.2€9]);

resp = step(ha,1e9,[0; 0]);

plotResponse(ha,1e9, 'RespCut', 'E1l', 'Format', 'Polar');

3-227

phased.CosineAntennaElement

B Fguret E=SE=n
File Edit View Inset Tools Desktop Window Help E

NEHe L ARRODEL- S| IE) D

Elevation Cut (azimuth angle = U.Ue}

Mormalized Power (dB)

MNormalized Power (dB), Broadside at 0.00 degrees

See Also phased.CustomAntennaElement | phased.IsotropicAntennaElement
| phased.ULA | phased.URA | phased.ConformalArray |

3-228

phased.CosineAntennaElement.clone

Purpose Create cosine antenna object with same property values
Syntax C = clone(H)
Description C = clone(H) creates an object, C, having the same property values

and same states as H. If H is locked, so is C.

3-229

phased.CosineAntennaElement.getNuminputs

Purpose
Syntax

Description

3-230

Number of expected inputs to step method
N = getNumInputs(H)

N = getNumInputs(H) returns a positive integer, N, representing the
number of inputs (not counting the object itself) you must use when
calling the step method. This value will change if you alter any
properties that turn inputs on or off.

phased.CosineAntennaElement.getNumOutputs

Purpose Number of outputs from step method
Syntax N = getNumOutputs(H)
Description N = getNumOutputs(H) returns the number of outputs, N, from the

step method. This value will change if you change any properties that
turn outputs on or off.

3-231

phased.CosineAntennaElement.isLocked

Purpose
Syntax

Description

3-232

Locked status for input attributes and nontunable properties

TF

isLocked(H)

TF isLocked(H) returns the locked status, TF of the
CosineAntennaElement System object.

The isLocked method returns a logical value that indicates whether
input attributes and nontunable properties for the object are locked. The
object performs an internal initialization the first time the step method
is executed. This initialization locks nontunable properties and input
specifications, such as dimensions, complexity, and data type of the
input data. After locking, the isLocked method returns a true value.

phased.CosineAntennaElement.plotResponse

Purpose

Syntax

Description

Input
Arguments

Plot response pattern of antenna

plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse(__)

plotResponse (H,FREQ) plots the element response pattern along the
azimuth cut, where the elevation angle is 0. The operating frequency
is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response
with additional options specified by one or more Name,Value pair
arguments.

hPlot = plotResponse(___) returns handles of the lines or surface in
the figure window, using any of the input arguments in the previous
syntaxes.

H
Element object.

FREQ

Operating frequency in hertz. If FREQ i1s a nonscalar row vector,
the plot shows multiple frequency responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuei,...,NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when
RespCut is 'Az' or 'E1'. If RespCut is 'Az', CutAngle must

3-233

phased.CosineAntennaElement.plotResponse

be between —90 and 90. If RespCut is 'E1', CutAngle must be
between —180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you
set Format to 'UV', FREQ must be a scalar.

Default: 'Line’

NormalizeResponse

Set this value to true to normalize the response pattern. Set this
value to false to plot the response pattern without normalizing it.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot.
Set this value to false to plot pattern cuts against frequency in a
3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and
RespCut is not '3D"'.
Default: true

RespCut
Cut of the response. Valid values depend on Format, as follows:
e [f Formatis 'Line' or 'Polar', the valid values of RespCut
are 'Az', 'E1l', and '3D'. The defaultis 'Az"'.

e If Formatis 'UV', the valid values of RespCut are 'U' and
'3D'. The default is 'U'.

3-234

phased.CosineAntennaElement.plotResponse

If you set RespCut to '3D', FREQ must be a scalar.
Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples Construct a default cosine antenna. Assume the antenna operating
frequency is 1 GHz. Plot the antenna’s response as a polar plot in 3-D.

hcos = phased.CosineAntennaElement;
plotResponse(hcos,1e9, 'Format', 'Polar', 'RespCut','3D"');

3-235

phased.CosineAntennaElement.plotResponse

Figure 1 E=0|Eoh =<

File Edit Wiew Insert Tools Desktop Window Help &

NEde | W ARODEL- |2 |([MER| 0D

3D Response Pattern

1]

-10

Mormalized Power (dB)

See Also uv2azel | azel2uv

3-236

phased.CosineAntennaElement.release

Purpose
Syntax

Description

Allow property value and input characteristics changes
release(H)

